

Nepomuk Otte

School of Physics & Center for Relativistic Astrophysics

Target sensitivity 10⁻⁹ GeV/s/cm²/sr

Science Motivation:

- What is the composition of UHECR?
- Extension of IceCube detected ν flux to 10⁹ GeV?
- Test of fundamental physics

Imaging Atmospheric Cherenkov Technique

Image in camera

Proven Technique

- Angular resolution <0.1°
- Energy resolution 10%
- Excellent background suppression

Nepomuk Otte

Trinity

Cherenkov/fluorescence telescope system

- 1-2 km above ground
- 360 degrees azimuthal acceptance
- •1 m² effective mirror area

Sensitivity determined by:

- Shower physics
 - Neutrino/tau physics (vertical acceptance)
 - Light emission pattern (azimuthal acceptance)
- Instrument (event reconstruction)
 - Image intensity (energy threshold)
 - Image resolution (angular resolution / background suppression)

Probability for τ Emergence

Azimuthal Acceptance

Lots of Cherenkov light scattered outside of primary 1° cone

Atmospheric Absorption

Radial Cherenkov Intensity Distribution

The Top View: Fluorescence

Azimuth acceptance: ~360°

Yield: 30 photons / MeV Keilhauer et al. 2012

For 10⁹ GeV τ: ~200 photons per m² in telescope if shower is 80 km away

Detection threshold 1 neutrino In 3 years 25% duty cycle

Uncertain by a factor of two

Detector Design Requirements

•360° azimuthal FoV and 5° vertical FoV

•1m² effective mirror area

•Minimum 0.3° angular resolution \rightarrow >10 pixel per image

Signal sampling speed 100 MS/s

Single photoelectron resolution

Machete

A transit imaging atmospheric Cherenkov telescope to survey half of the very high energy γ-ray sky

J. Cortina, R. López-Coto, A. Moralejo

Astropart.Phys. 72 (2016) 46-54

FOV of 5 × 60 sq deg

Scaled down to 1m² mirror:

- D=1.2 m, f=1.2 m, f/D=1
- Mirror surface: 1.2m x 2.5 m
- 90% containment: 0.42°
- plate scale factor: 20.9 mm/deg
- **Camera size**: 104.5 x 1254 mm² = 0.13 m²
- **Pixel size**: $6 \times 6 \text{ mm}^2$, 0.3° diameter $\rightarrow 3622$ pixel
- Light concentrator: factor 4
 → sensor size 3x3mm² (SiPMs)

Costs per station (optics only): ~\$50,000

Data Acquisition Requirements

- Photon arrival times spread out to ~10 μs \rightarrow "slow" 100MS/s DAQ sufficient
- NSB: 36mm² pixel record about
 → 4 photon / 1 µs
- Single pe signal stretched to 100 ns

Signal Chain

Back on the Envelope Cost Estimate

6 Detector stations for 360° FoV:

- 22,000 pixel * \$100/channel (sensor + readout) = \$2.2M
- Optics ~\$400k
- Infrastructure ~\$400k

\$3M total + R&D costs ~\$500k

Next Steps

Nepomuk Otte

Conclusions

 A dedicated Cherenkov/fluorescence instrument can deliver a sensitivity comparable to ARA/ARIANA

- Costs fit into a \$5M MRI
- Technique is proven and well established in VHE gamma rays
 Very good angular resolution and energy reconstruction
- Open issues need to be addressed with a small prototype
 Background photon rates
 - Cosmic Ray background
 - Signal extraction and triggering
 - Advanced methods can significantly improve sensitivity and lower energy threshold
 - Data analysis: How well can up-going showers separated from down-going ones

Air Shower Simulations

 With CORSIKA 7.56 modified to do Cherenkov emission for upward going particles (credit to D. Heck)

•Curved atmosphere with changing index of refraction

VERITAS atmospheric attenuation models generated with modtran

Restrict simulations to gammas

•first interaction always the same (100m above ground)

•pure em-shower no hadronic component, which widens Cherenkov footprint

 No LPM effect (important above 10⁷ GeV), which makes shower longer

side view

Cherenkov Spectrum

Cherenkov Spectrum in 50 km

Cherenkov Spectrum in 190 km

Comparison Cherenkov and Fluorescence

	Cherenkov	Fluorescence
Azimuthal acceptance	~20°	~360°
Elevation acceptance	~5°	~5°
Area on ground	120,000m ²	20,000m ²

~3 time sensitivity of Cherenkov

Nepomuk Otte

Prototype Site

IOTA site on Kitt Peak, AZ