

Search for Dark Matter Gamma-ray Emission from M31 with HAWC

Andrea Albert Los Alamos National Lab

> TeVPA Dark Matter Parallel August 8, 2017

The Andromeda Galaxy (M31)

- Nearby (~780 kpc) spiral Galaxy similar to the Milky Way
- Stellar rotation curves -> resides in a large dark matter halo
- Good target to search for gamma rays produced via dark matter annihilation or decay

The Andromeda Galaxy (M31)

- Need to model both the smooth DM component and substructure
- Define MIN and MAX models and a realistic benchmark MED
- Smooth components come from Tamm+ (2012)
- Full halo modeled using CLUMPY software

The Andromeda Galaxy (M31)

- Need to model both the smooth DM component and substructure
- Define MIN and MAX models and a realistic benchmark MED
- Smooth components come from Tamm+ (2012)
- Full halo modeled using CLUMPY software

The HAWC Observatory

dispersed

"hot" spots concentrate

around the core

HAWC analysis bins

	B	$f_{ m hit}$
	1	6.7 - 10.5%
I	2	10.5 - 16.2%
	3	16.2 - 24.7%
	4	24.7 - 35.6%
٩٧	5	35.6 - 48.5%
	6	48.5 - 61.8%
	7	61.8 - 74.0%
	8	74.0 - 84.0%
	9	84.0 - 100.0%

- 760 days of HAWC 300 data
- HAWC analysis in done in 'fraction of available PMTs' bins
 - Proxy for energy
 - See Abeysekara+ [The HAWC Collab]
 ApJ 843 39 (2017) arXiv:1701.01778
- Use the Multi-Mission Maximum Likelihood (3ML) software
 - Available on GitHub <u>https://github.com/giacomov/3ML</u>
 - See Vienello+ arXiv:1507.08343

Results -- bb

- No gamma-ray excess detected
- Limits set on DM annihilation cross section and decay lifetime
- Limits are 1 to 1.5 sigma below expectation

Flux Limits

- Calculate quasi-differential DM model-independent flux limits
 - See Aartsen+ arXiv:1702.06131 and Albert+ arXiv:1706.01277
- Find best fit normalization of powerlaw (Γ =2) restricted to half decade in log(E/TeV)
 - Calculate 95% CL limit to be where $\Delta TS = 2.71$

- No gamma-ray excess detected
- Limits set on DM annihilation cross section and decay lifetime
- Spread in limits between MIN and MAX models from DM halo modeling uncertainties

- HAWC M31 limits complement DM limits from other experiments
- Most constraining annihilation limits for mass > 70 TeV

Results Compared to other Experiments

- HAWC M31 limits complement DM limits from other experiments
- Most constraining decay limits in bb for mass > 7 TeV

Alamos

• Most constraining decay limits in $\tau^+\tau^-$ for mass > 1 TeV

- M31 being close by and in a large dark matter halo makes it a good target for indirect dark matter searches
- We find no gamma-ray excess in the direction of M31 in 760 days of HAWC data
- We calculate annihilation and decay limits using 3 different dark matter halo models: MIN, MED, MAX
- HAWC M31 limits complement dark matter limits obtained from other experiments
 - Most constraining decay limits in bb for m>7 TeV and τ⁺τ⁻ for m>1 TeV