Searches for dark matter beyond mono-jets at the ATLAS experiment

Rui Wang Argonne National Laboratory On behalf of the ATLAS Collaboration

TeVPA 2017, August 11th, 2017

DM models used at ATLAS

Effective field Theory

- m_{DM} , M^{*}, underlying coupling type, DM types
- Valid when mediator of the interaction between SM and DM particles are very heavy

Simplified model

- Standardized for ATLAS&CMS Run2
- Relatively light mediator (TeV-scale)
- Mediator has minimal decay width
- Minimal flavor violation
- Minimal set of parameters
 - Coupling structure, MMED, mDM, gSM (**g**_q), **g**_{DM}

LHC DM forum and working group Antonio Boveia's talk

1507.00966

Wendy Taylor's talk

DM search in Mono-X

- Directly produced Dark Matter (g_q & g_{DM})
 - Pair production of DMs
 - Mono-X signature
 - MET + bb, tt, Z(II) covered by this talk
 - Using control regions to constrained background from known processes

MET + γ , W/Z(had), Higgs in Wendy Taylor's talk

ATLAS-CONF-2016-086

MET+bb

- Motivation to a search in association with Heavy Flavour quarks
- Mediator is a (pseudo-) scalar, DM is a dirac fermion
 - Assumes Yukawa-like couplings between mediator and SM fermions
- Events with E_{miss}^T > 150 GeV, two b-tagged jets

 $N_{\mbox{\scriptsize obs.}}$ in the CRs are used in combined profile likelihood fit to determine the expected SM background yields in the SR

ATLAS-CONF-2016-086

MET+bb

- Motivation to a search in association with Heavy Flavour quarks
- Mediator is a (pseudo-) scalar, DM is a dirac fermion
 - Assumes Yukawa-like couplings between mediator and SM fermions
- Events with E_{miss}^T > 150 GeV, two b-tagged jets
- Background dominated by Z->vv
 - large dR between jets (>2.8)
 - Imb(b1, b2) =(pT(b1) pT(b2)) / (pT(b1) + pT(b2))> 0.5

66666666

MET+tt

- Motivation to a search in association with Heavy Flavour quarks
- Similar DM model as MET+bb
- Events with MET+tt(had, 1L, 2L)
 - Same final state as for SUSY 1-lepton EW searches

MET+Z(II)

- Axial-vector mediator , DM is a dirac fermion
- Events with a boosted Z (ee/µµ pair) back-to-back with MET
 - MET > 90 GeV, MET/H_T>0.6
 - ΔΦ(Z, MET) > 2.7, ΔR(II) < 1.8, b-veto
- Background dominated by ZZ and WZ

DM search in Di-X

- Search for mediator (g_q & g_q)
 - Pair production of SM final state
 - di-jet, di-b-jet, tt, di-lepton covered by this talk

- Probing TeV resonances generically
- Mediator mass search usually limited by the trigger threshold
 - Special treatment needed to go to lower mass

<u>Highest mass di-jet event</u>

dijet: EXOT-2016-21

Run: 305777 Event: 4144227629 2016-08-08 08:51:15 CEST

Ref: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2016-21/figaux_11.png Rui Wang 9

Di-jet

- Narrow resonance search above 1.1 TeV
 - p_{T,1} (p_{T,2}) > 440 (60) GeV
 - |y*|<0.6, y*= (y1-y2)/2

Narrow peak on top of the smooth falling

QCD background

Use *Bumphunter* to search for possible excess

- Looking for the most significant deviation from the
 - background spectrum
- Bump hunter p-value reflects the bins that have the smallest probability of arising from a background fluctuation (assuming poisson statistics)

Di-jet

- Narrow resonance search above 1.1 TeV
 - p_{T,1} (p_{T,2}) > 440 (60) GeV
 - |y*|<0.6, y*= (y1-y2)/2

 Angular search — sensitive to wide mediators or non-resonant signature

EXOT-2016-21

Argonne 🕰

TLA + di-jet ISR — Expand to lower m_{jj}

- TLA (trigger level analysis) use Data Scouting stream
 - Stores partial event informations (~ 5% of full event)
 - dedicated jet calibration for trigger level (TL) jets

- Trigger selection on ISR objects
 - Jets $p_T > 25$ GeV, $|\eta| < 2.8$
 - $\gamma + JJ : \gamma p_T > 150 \text{ GeV}, |y^*_{12}| < 0.8, \\ \Delta R_{\gamma, closest} > 0.85$
 - J+JJ : p_{T,1} > 430 GeV, |y*₂₃| < 0.6

Argonne 🕰

Di-jet limits

 ATLAS bounds in the coupling-mediator mass plane of leptophobic Z' DM mediator from dijet searches using 2015 and 2016 data (<u>link</u>)

ATLAS DarkMatterCoupling Summary/ATLAS DarkMatterCoupling Summary.png

Di-b-jet — couple preferentially to b-quark

- Narrow resonance search with b-tagged jets
- Low mass 570<m_{jj}<1200 GeV</p>
 - p_{T,1} (p_{T,2}) > 250 (60) GeV
 - |y*|<0.6, y*= (y1-y2)/2
 - b-tagged trigger + offline 2 b-tag

- High mass m_{jj}>1380 GeV
 - p_{T,1} (p_{T,2}) > 430 (60) GeV
 - |y*|<0.6, y*= (y1-y2)/2
 - Offline 2 b-tag

ATLAS-CONF-2016-014

ttbar resonance search

- DM couple preferentially to t-quark
- Events with exactly 1 electron or muon,
 - MET > 20 GeV, MET + MWT> 60 GeV ($MWT = \sqrt{p_T^{lep}.MET.2(1 cos \Delta \Phi(MET, lepton))}$)
 - top-tagged large-R jets
 - 1 b-tagged track jet

Di-lepton resonance search

Events with one pair of isolated e/µ with pT>30 GeV

Di-lepton resonance search

Events with one pair of isolated e/µ with pT>30 GeV

- Worse mass resolution in the µµ channel than in the ee channel.
 - Rapidly falling signal cross-section
 - Increase of the off-shell production in the lowmass tail, and the natural width of the resonance
- Selection efficiency slowly decrease at very high pole masses (subdominant)

limits on the ratio of coupling strengths between the Z' boson and the Z boson, as a function of the Z' mass in the context of minimal Z' models

Summary

• ATLAS is a telescope for new physics in multiple final states

Ref: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/ATLAS_DarkMatter_Summary/ATLAS_DarkMatter_Summary.png

ATLAS-CONF-2016-086

MET+bb selection criterial

Quantity	SR	CRZ1b	VRZ2b	CRW1b	VRW1b	CRW2b	VRLR
\mathcal{N}_{lepton} (baseline)	0	2 (SFOS)	2 (SFOS)	1	1	1	0
\mathcal{N}_{lepton} (high-purity)	0	2 (SFOS)	2 (SFOS)	1	1	1	0
$\Delta \phi_{\min}^{j}$	> 0.4	> 0.4	> 0.4	> 0.4	> 0.4	> 0.4	> 0.4
$\mathcal{N}_{\mathrm jets}$	2 - 3	2 - 3	2 - 3	2 - 3	2 - 3	2 - 3	2 - 3
$\mathcal{N}_{\mathrm bjets}$	= 2	= 1	= 2	= 1	= 1	= 2	= 2
jet 1 $p_{\rm T}$ [GeV]	> 100	> 100	> 85	> 100	> 100	> 100	> 100
jet 2 $p_{\rm T}$ [GeV]	> 20	> 20	> 20	> 30	> 30	> 20	> 20
jet 3 $p_{\rm T}$ [GeV]	< 60	< 60	< 60	< 60	< 60	< 60	< 60
$p_{\rm T}^{\rm b\text{-jet1}}$ [GeV]	> 50	> 50	> 50	> 50	> 50	> 50	> 50
$E_{\rm T}^{\rm miss}$ [GeV]	> 150	< 100	< 80	> 130	> 150	> 120	> 150
$E_{\rm T}^{\rm miss, cor}$ [GeV]	-	> 120	> 100	-	-	-	-
ΔR_{min}	> 2.8	> 2.8	> 2.8	> 2.5	> 2.8	> 2.8	< 2.5
$\Delta \eta(b_1, b_2)$	> 0.5	-	-	-	> 0.5	-	> 0.5
$Imb(b_1, b_2)$	> 0.5	-	-	-	-	-	> 0.5
m_{T}^{lep}	-	-	-	[30, 100]	[30, 100]	> 30	-
$m_{\ell\ell}$	-	[75, 105]	[80, 100]	-	-	-	-
lepton 1 $p_{\rm T}$ [GeV]	-	> 30	> 30	> 30	> 30	> 30	-
lepton 2 $p_{\rm T}$ [GeV]	-	> 25	> 25	-	-	-	-
$\Delta\phi(b_1, b_2)$	> 2.2	> 2.2	-	[1, 2.2]	> 2.2	> 2.2	> 2.2

ATLAS-CONF-2016-086

MET+bb limits

MET+tt signal selection criterial ATLAS-CONF-2017-037

Signal region	DM_low_loose	DM_low	DM_high
Preselection		high- $E_{\rm T}^{\rm miss}$ preselection	
Number of (jets, b-tags)	$(\geq 4, \geq 1)$	$(\geq 4, \geq 1)$	$(\geq 4, \geq 1)$
Jet p_T [GeV]	>(60, 60, 40, 25)	>(120, 85, 65, 25)	>(125, 75, 65, 25)
b -tagged jet p_T [GeV]	_	> 60	-
$E_{\rm T}^{\rm miss}$ [GeV]	> 300	> 320	> 380
$m_{\rm T}$ [GeV]	> 120	> 170	> 225
$H_{\mathrm{T,sig}}^{\mathrm{miss}}$	> 14	> 14	-
am_{T2} [GeV]	> 140	> 160	> 190
$m_{top}^{reclustered}$ [GeV]	_	> 130	> 130
$\Delta \phi(\vec{p}_{T}^{miss}, \ell)$	> 0.8	> 1.2	> 1.2
$ \Delta \phi(\text{jet}_i, \vec{p}_T^{\text{miss}}) $	> 1.4	> 1.0	> 1.0
$ \Delta \phi(j_{1,2}, \vec{p}_{T}^{miss}) $		> 0.4	
m_{T2}^{τ} based $\tau\text{-veto}\left[\mathrm{GeV}\right]$		> 80	
exclusion technique	cut-and-count	cut-and-count	cut-and-count

ATLAS-CONF-2017-037

MET+tt limits

ATLAS-CONF-2017-040

MET+Z(II) limits

 m_{Med} excluded at 560 GeV for light DM, m_{DM} excluded at 130 GeV for m_{Med} = 400 GeV

Generaical Gaussian limits

EXOT-2016-21 ATLAS-CONF-2016-030 ATLAS-CONF-2016-070

contact interaction limits

Dijet angular search

dilepton search

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Statue: July 2017

Su	atus: July 2017					$\int \mathcal{L} dt = (3.2 - 37.0) \text{ fb}^{-1}$	√s = 8, 13 TeV
	Model	l, γ	Jets†	${\sf E}_{\sf T}^{miss}$	∫£ dt[fb	1) Limit	Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{\text{KK}} + g/q \\ \text{ADD non-resonant } \gamma\gamma \\ \text{ADD OBH} \\ \text{ADD BH high } \sum p_T \\ \text{ADD BH multijet} \\ \text{RS1 } G_{\text{KK}} \to \gamma\gamma \\ \text{Bulk RS } G_{\text{KK}} \to WW \to qq\ell\nu \\ \text{2UED / RPP} \end{array}$	0 e,μ 2 γ ≥ 1 e,μ - 2 γ 1 e,μ 1 e,μ	1-4j - 2j ≥2j ≥3j - 1J ≥2b,≥3	Yes - - - Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 13.2	Mo 7.75 TeV a = 2 Ms 8.6 TeV a = 3 HLZ NLO Ma 8.9 TeV a = 6 Ma 8.9 TeV a = 6 Ma 9.55 TeV a = 6, Mo = 3 TeV, r Ma 9.55 TeV a = 6, Mo = 3 TeV, r Gax mass 4.1 TeV k/M ₀ r = 0.1 KK mass 1.6 TeV Ter (1,1), B(A ^(1,1) →	ATLAS-CONF-2017-060 CERN-EP-2017-132 1703.09217 6BH 1606.02265 6BH 1512.02586 CERN-EP-2017-132 ATLAS-CONF-2017-132 ATLAS-CONF-2017-051 rt) - 1 ATLAS-CONF-2016-104
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to rr \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tr \\ \text{SSM } W' \to \ell\nu \\ \text{HVT } V' \to WV \to qqqq \mbox{ model } B \\ \text{HVT } V' \to WH/2H \mbox{ model } B \\ \text{HVT } V' \to WH/2H \mbox{ model } B \\ \text{LRSM } W'_R \to tb \\ \text{LRSM } W'_R \to tb \end{array}$	2 e,µ 2 r 1 e,µ 1 e,µ 0 e,µ multi-channe 1 e,µ 0 e,µ	- 2b ≥1b,≥1J 2J 2b,0-1j ≥1b,1J	- - - Yes - Yes	36.1 36.1 3.2 3.2 36.1 36.7 36.1 20.3 20.3	Z' mass 4.5 TeV Z' mass 2.4 TeV Z' mass 2.4 TeV Z' mass 1.5 TeV Z' mass 2.0 TeV Y' mass 5.1 TeV V' mass 3.5 TeV Y' mass 2.93 TeV W' mass 1.92 TeV W' mass 1.76 TeV	ATLAS-CONF-2017-027 ATLAS-CONF-2017-050 1602.08791 ATLAS-CONF-2016-014 1706.04386 CERN-EP-2017-047 ATLAS-CONF-2017-055 1410.4103 1408.0886
5	Cl qqqq Cl //qq Cl outt	– 2 e,µ 2(88)/≥3 e,{	2j ⊭≥1 b, ≥1	- Yes	37.0 36.1 20.3	A 21.8 TeV σ _{it} A 40.1 40.1 A 4.9 TeV C _{sol} = 1	1703.09217 π/γ τ _{LL} 1703.09217 ATLAS-CONF-2017-027 1504.04605
DM	Axial-vector mediator (Dirac DM) Vector mediator (Dirac DM) VV/ _{XX} EFT (Dirac DM)	0 e,μ 0 e,μ, 1 γ 0 e,μ	1-4j ≤1j 1J,≤1j	Yes Yes Yes	36.1 36.1 3.2	Phone 1,5 TeV gg=0.25, gg=1.0, m(g Phone 1.2 TeV gg=0.25, gg=1.0, m(g Ma 700 GeV m(g) < 150 GeV	< 400 GeV ATLAS-CONF-2017-060 < 480 GeV 1704.00848 1608.02372
9	Scalar LQ 1 st gen Scalar LQ 2 st gen Scalar LQ 3 st gen	2e 2µ 1e,µ	≥ 2 j ≥ 2 j ≥1 b, ≥3	- - Ves	3.2 3.2 20.3	LC mass 1.1 TeV β-1 LC mass 1.05 TeV β-1 LC mass 640 GeV β-0	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} \text{VLQ } TT \rightarrow Ht + X \\ \text{VLQ } TT \rightarrow Zt + X \\ \text{VLQ } TT \rightarrow Wb + X \\ \text{VLQ } BB \rightarrow Hb + X \\ \text{VLQ } BB \rightarrow Zb + X \\ \text{VLQ } BB \rightarrow Wt + X \\ \text{VLQ } QQ \rightarrow WqWq \end{array} $	0 or 1 e, µ 1 e, µ 1 e, µ 1 e, µ 2/23 e, µ 1 e, µ 1 e, µ	$\geq 2b, \geq 3$ $\geq 1b, \geq 3$ $\geq 1b, \geq 1J$ $\geq 2b, \geq 3$ $\geq 2/\geq 1b$ $\geq 1b, \geq 1J$ $\geq 1b, \geq 1J$ $\geq 1b, \geq 1J$ $\geq 4j$	Yes Yes 2] Yes Yes 2] Yes Yes	13.2 36.1 36.1 20.3 20.3 36.1 20.3	T mass 1.2 TeV $B(T \rightarrow Ht) = 1$ T mass 1.16 TeV $S(T \rightarrow 2t) = 1$ T mass 1.25 TeV $S(T \rightarrow Ht) = 1$ B mass 700 GeV $S(B \rightarrow Hb) = 1$ B mass 790 GeV $S(B \rightarrow Hb) = 1$ B mass 790 GeV $S(B \rightarrow 2b) = 1$ B mass 1.25 TeV $S(B \rightarrow Wt) = 1$ Q mass 690 GeV $S(B \rightarrow Wt) = 1$	ATLAS-CONF-2016-104 1705.10751 CERN-EP-2017-094 1505.04306 1409.5500 CERN-EP-2017-094 1509.04261
Excited	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton t^* Excited lepton r^*	- 1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	2j 1j 1b,1j 1b,20j -	- - Yes -	37.0 36.7 13.3 20.3 20.3 20.3	q* mass 6.0 TeV only o' and d', A = m q* mass 5.3 TeV only o' and d', A = m b* mass 2.3 TeV only o' and d', A = m b* mass 1.5 TeV f _g = f ₀ = 1 d* mass 3.0 TeV A = 3.0 TeV v* mass 1.6 TeV A = 1.6 TeV	(q') 1703.09127 (q') CERN-EP-2017-148 ATLAS-CONF-3016-060 1510.02654 1411.2921 1411.2921
Other	LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ 2 Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	2 e,μ 3,4 e,μ (SS 3 e,μ,τ 1 e,μ - - - - - - - - - - - - -	2j - 1b - - -	- Ves - 3 TeV	20.3 36.1 20.3 20.3 20.3 7.0	N ⁴ mass 2.0 TeV m(We) = 2.4 TeV, no H ¹¹ mass 870 GeV DY production DY production H ¹¹ mass 400 GeV DY production, st(H ²⁺ ₂) a _{bac-res} = 0.2 multi-charged particle mass 1.34 TeV DY production, [g] = 1 10 ⁻¹ 1 10 Mass sca	mixing → (r) = 1 r go, spin 1/2 HISSE.06020 ATLAS-CONF-2017-053 1411.2321 1410.5404 1504.04185 1509.08059

*Only a selection of the available mass limits on new states or phenomena is shown. +Small-radius (large-radius) jets are denoted by the letter j (J).

Ref: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/ EXOTICS/ATLAS_Exotics_Summary/ATLAS_Exotics_Summary.png

ATLAS Preliminary

ATLAS limit on vector mediator

Ref: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/</u> EXOTICS/ATLAS DarkMatter Summary/ATLAS DarkMatter Summary.png

ATLAS limit on vector mediator

g_q=0.25, q_I=0,q_{DM}=1

g_q=0.1, q_I=0.01,q_{DM}=1

Ref: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/</u> <u>CombinedSummaryPlots/EXOTICS/ATLAS_DarkMatter_Summary/</u> <u>ATLAS_DarkMatter_Summary.png</u> Rui Wang Ref: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ CombinedSummaryPlots/EXOTICS/ ATLAS_DarkMatter_Summary_Vector_ModifiedCoupling/ ATLAS_DarkMatter_Summary_Vector_ModifiedCoupling.png

