Searches for BSM Higgs bosons @ ATLAS

Doubly charged Higgs candidate

Gustavo Otero y Garzón – on behalf of the ATLAS Collaboration
Universidad de Buenos Aires - Argentina

TeVPA 2017
Introduction

- Higgs boson 2012-discovery completed the SM
 - $h(125)$ looks very SM-like so far

- Still important phenomena are not included

- Several models beyond the SM (BSM) proposed as solutions to these issues which imply additional Higgs bosons
 - Neutral (CP-even H, CP-odd A)
 - Charged (singly H^\pm, doubly $H^{\pm\pm}$)

- Searches for BSM Higgs bosons performed by looking at:
 - Fermionic, bosonic, di-higgs decays
 - Deviations from SM in rare and invisible decays

BR to BSM decays < 34% @ 95%CL

arXiv:1606.02266
BSM Higgs

- **Electroweak Singlet**
 - Addition of real scalar singlet results in two bosons: h and H

- **Two Higgs Doublet Model (2HDM)**
 - 2 Higgs doublets ϕ_1 and ϕ_2
 - 5 Higgs bosons: h, H, A, H^\pm
 - Several types depending on the couplings
 - Many parameters: $\tan \beta = v_1/v_2$, mixing angle α, masses

- **Minimal Supersymmetric SM (MSSM)**
 - SUSY in its minimal form
 - Type-II 2HDM with 5 Higgses h, H, A, H^\pm
 - 2 parameters at LO: $\tan \beta$ and m_A
 - Phenomenological scenarios ($hMSSM$, m_h^{max}, $m_h^{mod\pm}$)

- **Higgs Triplet Model (HTM)**
 - ϕ^{++}, ϕ^+, ϕ^0
 - Includes $H^{\pm\pm}$

Run-1 exclusion limits for hMSSM
Summary of results

- Searches performed with the ATLAS detector
 - Run-2 data at $\sqrt{s} = 13$ TeV: partial 2016 + full 2015 (~15fb$^{-1}$), full 2015 + 2016 (~36fb$^{-1}$)
 - Results presented as:
 - Discovery!
 - Limits on production cross section of new Higgs bosons
 - Constraints on BSM physics benchmark scenarios

- Neutral H to bosons
 \[H \rightarrow \gamma\gamma \]
 \[H \rightarrow WW \rightarrow l\nu qq' \]
 \[H \rightarrow ZZ \rightarrow 4l/2l2\nu \]

- Neutral H to fermions
 \[A/H \rightarrow \tau\tau \]

- Neutral H to SM di-higgs
 \[H \rightarrow hh \rightarrow WW\gamma\gamma \]

- Charged Higgs
 \[H^\pm \rightarrow \tau^\pm\nu \]
 \[H^\pm \rightarrow tb \]
 \[H^{\pm\pm} \rightarrow 4l \]

- Invisible and rare decays
 \[H \rightarrow inv \ (ZH \rightarrow ll + E_T^{miss}) \]
 \[H \rightarrow Z\gamma \]
 \[H \rightarrow \phi\gamma/H \rightarrow \rho\gamma \]
Neutral Higgs Boson to Bosonic final states
Two high-p_T photon final state

In 2015 ATLAS and CMS reported $\sim 3\sigma$ excess around 750 GeV with 3.2 fb$^{-1}$

Latest result with 11 times that data shows no excess within 1σ

Spin-0 and spin-2 (RS-model and KK-graviton) resonances search

@750GeV: $3.0\sigma_{\text{local}}, 0.8\sigma_{\text{global}}$
H → WW/WZ → lνqq’

- WW/WZ resonance search in the NWA (4 GeV)
- One W decays leptonically and the other boson to hadrons
 - Boosted boson tagging
- 2 production modes considered: VBF and ggF
- Three signal hypothesis considered:
 - HVT, RS graviton, NW heavy scalar

ATLAS Preliminary

\(|\sqrt{s}| = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}\)

DY Category

- Data
- W+jets
- tt
- Single t
- Dibosons
- Z+jets
- Post-fit uncertainty
- HVT Model A Z’
- 2000 GeV (+5)

Observed 95% CL upper limit

Expected 95% CL upper limit (± 1σ)

Expected limit (± 2σ)

m(Scalar) [TeV]

0.5 1 1.5 2 2.5 3 3.5 4

10^{-3} 10^{-2} 10^{-1} 1 10 100 10^{3}
H → ZZ → 4 leptons

- Resonance search in the 4l and 2l2ν final states using m_{4l} and m_{T}, respectively
 - Fully reconstructed pair of Zs decaying to 4 leptons
- Heavy higgs (H) in ggF and VBF modes decaying to ZZ in a NWA
 - Events with 2 separated jets with high dijet mass: VBF, ggF otherwise
- Also LWA considered
- Interpretation for bulk Randall-Sundrum Graviton Model and Heavy Scalar

ATLAS Preliminary

\[s = 13 \text{ TeV}, \, 36.1 \text{ fb}^{-1} \]

\[H \rightarrow ZZ \rightarrow l^+l^-l'^{+}l'^{-} \]

\(ggF \)-enriched

\[m_{4l} \text{ [GeV]} \]

\[m_{T} \text{ [GeV]} \]

4l – ggF-enriched

2l2ν – VBF-enriched
Data excess in NWA at 240 and 700 GeV predominantly in ggF 4ℓ categories
- 3.6σ (local), 2.2σ (global)

Also exclusion limits in 2HDM, RS graviton and LWA
Neutral Higgs Boson to Fermionic final states
Heavy resonance search in di-tau events
- Two final states: semileptonic tau decays and fully hadronic

Promising search for high $\tan\beta$

Two main categories: b-tagged (bbH) and b-veto (ggF)

Results interpreted in many MSSM scenarios
- Large $\tan(\beta)$ enhances H coupling to down fermions (tau, b)
Excursion limits on $\sigma \times BR$ for model independent (ggF, bbH) and model dependent ($m_h^{\text{mod+}}$, hMSSM)
Charged Higgs Boson
- **Final state:** τ, E_T^{miss} and a top quark
 - Fully hadronic τ decays

- Limits on production cross section and parameter values

- Results interpreted in various scenarios
 - MSSM shown

- No significant excess
- Same production mode as in previous result
- Final state: 1 lepton, $E_T^{\text{miss}} + \text{jets (some b-jets)}$
- Events categorized in different signal/control regions
 - Use MVA technique for final discriminant
 - Simultaneous fit in all regions
- Result interpreted in $m_h^{\text{mod-}}$ scenario of MSSM
Doubly charged Higgs bosons from many BSM scenarios
- Pairs of high-p_T isolated SS leptons (e, μ)
 - Prompt leptons, fake leptons and charge-flip backgrounds
- Fit several control and signal regions
- Limits assuming different BRs
Di-Higgs production
Large BR of WW and clean signature of two photons and 1 lepton
- Low BR of $\gamma\gamma$ limits sensitivity at high mass
Higgs boson rare or invisible decays
Clear signature for $ZH \rightarrow ll + E_T^{\text{miss}}$
 - The SM invisible decay ($H \rightarrow ZZ \rightarrow 4\text{neutrinos}$) has $BR \sim 10^{-3}$

Assume SM ZH production to place upper limit on $B(H \rightarrow \text{inv})$

Interpret result in DM models with BSM vector mediator

Small excess in $\mu\mu$ channel (2.2σ)
- Exclusion limit on $B(H \rightarrow \text{inv})$ assuming SM ZH cross section: 67% (observed)

- 95% exclusion limit in 2D m_χ and m_{med}
 - Mediator mass excluded up to 560 GeV
 - WIMP mass (m_χ) excluded up to 130 GeV
Final state coming from loop diagrams

Possible differences from SM prediction
 - H is a different neutral scalar
 - H is composite
 - Additional particles in the loops

Signal extracted from S+B fit to m(Zγ)
 - 6 categories and BDT discriminant

No significant excess observed w.r.t SM
 - \(2.7\) \(\sigma^{\text{local}}\), \(0.8\) \(\sigma^{\text{global}}\) @ 960 GeV

\[\text{arXiv:1708.00212}\]
Conclusions

- Very active ATLAS’ search for BSM phenomena in the Higgs sector
 - Results with partial / full 2016 data presented

- Only a small fraction of results shown here
 - Checkout ATLAS public results at
 https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

- No significant excesses over SM have been found so far
 - 10 fb⁻¹ of 2017 data being analyzed and x10 full 2016 statistics for full Run-2!
Back Up
- Processes sensitive to light quarks couplings to the Higgs
- SM expectation: $B(\text{H} \rightarrow \phi \gamma) \sim 10^{-6}$ and $B(\text{H} \rightarrow \rho \gamma) \sim 10^{-5}$
- Final state reconstructed from two high-pT isolated tracks consistent with ϕ or ρ with a recoiling photon

- Observed 95% CL upper limits on branching fractions for $\text{H} \rightarrow \phi \gamma$ ($\text{H} \rightarrow \rho \gamma$) decays are around 208 (52) the expected SM