Showering Muons in Super Kamiokande

Scott Locke

University of California, Irvine

August 7th, 2017

Super Kamiokande Detector

50kton water Cherenkov

- Ultrapure Water
- 22.5 kton fiducial volume (32 kton for SN burst)
- 11, 129 20-inch PMTs (inner), 1885 of 8-inch PMTs (outer)
- Phase Period inner PMTs coverage
- SK-I 1996-2001 11,146 40%
- SK-II 2002-2005 5,182 19%
- SK-III 2006-2008 11,129 40%
- SK-IV 2008-2018 (same as SK-III with new electronics)
- SK-Gd 20XX-
- ~300 kt-years exposure
- Detects neutrinos from many sources
- T2K far detector

Introduction

- ~2 Hz muon rate
- Others usually consider it a MIP, which isn't always the case
 - Large amount of energy can be deposited, especially in the form of a shower
- Issues arise when these cause spallation

5.6 Mpe \approx .94 TeV deposited within detector

Picture of Control Room Event Display

Spallation

- Spallation is caused largely by muon induced showers
- It can be long lived ($\tau \sim O(10s)$)
 - Troublesome when trying to perform specific analyses
- Shower does not guarantee spallation

Radioacti	ve isotope τ (s)	Decay mode	$E_{\rm kin.}$ (MeV)	Primary process
¹¹ Be	19.9	β^{-}	11.51	$^{16}O(n, \alpha + 2p)^{11}Be$
		$\beta^-\gamma$	$9.41 + 2.1(\gamma)$	
¹⁶ N	10.3	β^{-}	10.44	${}^{16}\mathrm{O}(n,p){}^{16}\mathrm{N}$
		$\beta^-\gamma$	$4.27 + 6.13(\gamma)$	
^{15}C	3.53	β^-	9.77	${}^{16}\mathrm{O}(n,2p){}^{15}\mathrm{C}$
		$\beta^-\gamma$	$4.51 + 5.30(\gamma)$	
⁸ Li	1.21	β^{-}	$\sim \! 13.0$	${}^{16}\mathrm{O}(\pi^-, \alpha + {}^{2}\mathrm{H} + p + n)^{8}\mathrm{Li}$
^{8}B	1.11	β^+	$\sim \! 13.9$	${}^{16}\mathrm{O}(\pi^+, \alpha + 2p + 2n)^8\mathrm{B}$
S. W. Li and J. F. Beacom, Phys. Rev. C 89, 045801(2014)				

Shower Spallation Daughter Particles Decay False Signature

Radioactive isotope	ϵ_i	$R_i (\mathrm{kton}^{-1} \mathrm{day}^{-1})$
^{12}B	45.5%	$19.8 {\pm} 0.1 {\pm} 1.0$
^{12}N	56.2%	$2.8 {\pm} 0.1 {\pm} 0.1$
^{16}N	45.0%	$39.7 \pm 3.3 \pm 2.8$
$^{11}\mathrm{Be}$	38.1%	$<\!16.9$
⁹ Li	39.2%	$0.9 {\pm} 0.3 {\pm} 0.3$
${}^{8}\mathrm{He}/{}^{9}\mathrm{C}$	22.2%, 50.2%	<1.4
⁸ Li/ ⁸ B	42.8%, 51.3%	$8.3 \pm 0.3 \pm 0.3$
¹⁵ C	31.8%	<6.7

Y. Zhang et et al. (Super-Kamiokande Collaboration), Phys. Rev. D 93, 012004 (2016)

Muon Showers

- Shower can be hadronic or electromagnetic
- Both have large EM component
- Look at the energy deposited into detector along muon track
 - dE/dx plots
 - Map PMT hits back to the muon track
- Look for large deposits of energy in these plots

5

Effects

- Acts as a background to major analyses:
 - DSNB
 - Solar neutrinos
- Inhibits us from lowering the threshold for DSNB analysis
- Reducing this background is imperative to enhancing these searches

Φ

Hadronic Showers

- Hadn't been seen directly before
- Beacom and Li theorized that a large number of neutrons would be in the shower accompanying a spallation causing muon
- Use WIT (Wideband Intelligent Trigger) system for a lower threshold to see 2.2 MeV gamma from n+p interactions
- All the following is preliminary

Neutron Tagging

- Initial Data Set:
 - ~6 weeks of data
 - 20-500 µs after muon
 - E < 5.5 MeV kin
 - <5m from track
 - Anywhere in detector (no FV cut)
 - Basic cut used on some of the data
 - Simple time, goodness, lt cuts
- Sharply peaked closer to the track

Event Correlation

- Events are tightly correlated
 - Maintain correlation to higher multiplicity
- Look in the future to use this as \bullet an isolated cut
 - $\sim 0.7\%$ muons have 2+ events with above cuts
 - A rough calculation finds ~51s a day of dead time for a \pm 2.5m and 60s cut from x_{avg} for events with 2+ candidates

Time Correlation

- Use a simple exponential $N[dt] = e^{p0+p1*dt} + p2$
- Make a background calculation
 - High purity: ~.0027 accidentals/m of muon track
 - .067 accidentals/25m muon
- Still have good agreement when relaxing the purity cut

Multiplicity

- Note
 - No background subtraction
 - Significantly < 0.5 accidentals/muon, even for low purity
 - Only events from sample
 - 0 bin is a lot bigger with all muons
- Everything shifts, but 0 peak does not grow significantly
- Efficiency:
 - 13.5% (17.2% in FV) efficiency for seeing MC generated neutrons
 - Drops to 4.2% (5.4% in FV) when making goodness and vertex correlation to true location cut

Work

The Future

- SK-Gd
 - Increased capture efficiency on Gd
 - Easier to see the signal
 - Works with increased efficiency to improve tagging
 - Prepare for the signal that SK-Gd should be expecting to see
- Hyper-K
 - Bigger tank with possibly lower overburden
 - Neutrons become even more common as muon rate increases with more volume to interact with

Summary

- Even under 1 km of mountain, still see a non negligible muon rate
 - These muons cause issues in analyses by creating long lived spallation background
- Currently we look at the EM component of both kinds of showers to try and tag this background
- Recent efforts has shown it is possible to directly see the hadronic shower, specifically the neutrons produced
- Events are tightly correlated to each other and the preceding muon
- Efficiency of n capture on H is one of the biggest limiting factors, which should be enhanced with Gd

Super-Kamiokande Collaboration

- 10 nations
- ~42 institutions
- ~160 Researchers
- As of June 2017