High-Energy Gamma-Rays from the Milky Way: 3D Spatial Models for the CR and Radiation Field Densities $\pi^\pm \rightarrow \mu^\pm \rightarrow e^\pm$

Troy A. Porter
Stanford University
What is GALPROP?

- Tool for modelling and interpreting cosmic-ray (CR) and non-thermal emissions data
- Key ideas: self-consistent modelling and realism
- Self-consistency: different kinds of data (CR data, radio, gamma rays) are inter-related because the measured CRs propagate in the ISM losing energy, which produce broadband EM emissions and other secondaries that are also measured
- Realism: objective to include as much realism into the underlying models for the ISM and CR sources, and propagation phenomenology – based on extensive collection of astronomical and nuclear/particle data with minimal simplifying assumptions
- GALPROP combines these into a framework that can be downloaded/installed locally, or run from a web-browser at the GALPROP website: galprop.stanford.edu
Cosmic Rays and Interstellar Emission

GALPROP +

ISM

diffusion
energy losses
reacceleration
convection
etc.

He CNO

P

CR species:
- Only 1 location
- modulation

PAMELA

20 GeV/n

helio-modulation

BESS

PSF

HESS

Chandra

Fermi

ACE

TeV Particle Astrophysics 2017

Troy A. Porter, Stanford University
Developments and New Release

- Numerous technical and physics improvements
- Spatial variations in propagation for diffusion via diffusion coefficient and Alfvén speed (reacceleration)
- Generalised source distribution and spectral models: separately specified spatial densities and spectra for each CR species
- 2D/3D gas models
- 2D/3D interstellar radiation field models
- Arbitrary positioning of observer – useful for modelling also other galaxies
- Improved solvers for propagation equations, parallel and vectorised – dramatically decreases time for 3D calculations
- New integrator for non-thermal intensity map calculations – includes pair absorption on ISRF models (user-specified)
- Other improvements both large and small, including coupling to HelMod code – enabling tracing CRs from Heliopause (LIS) to Earth … no more “force-field” approximation for solar modulation
3D models for the Interstellar Emission

- New release of GALPROP (v56) + 3D CR source density models + 3D ISRF models
- 3 CR source density models: CR power injected according to `Pulsars’ (2D), 50% Pulsars + 50% spiral arms, 100% spiral arms. Propagation parameters adjusted for each to reproduce measurements of CR data: protons, secondaries, leptons from AMS-02, PAMELA, HEAO-3
- 2 ISRF models: one with spiral arms, star-forming ring, central bulge; one with smooth disc with inner hole, ellipsoidal bar … both calculated with FRaNKIE code and tested to reproduce near- to far-infrared data (shorter wavelengths not so useful because of strong dust extinction). Both model inputs for the stellar luminosity and dust spatial distributions taken from literature: R12 (Robitaille et al. 2012) and F98 (Freudenreich 1998)

Cosmic Rays

- Source spectra modelled with broken power laws in rigidity
- Assume diffusive reacceleration model with 6 kpc halo and fit usual propagation parameters for each source distribution
- Normalisation for the propagated CR intensities is made to CR data (AMS-02, PAMELA, HEAO-3)

CR energy density at plane

Pulsars
ISRF Models: R12 and F98

Intensity at Solar system for $|b| < 5^\circ$

- Full radiation transport modelling using FRaNKIE code
- R12 includes stellar disc, ring, bulge, 4/2 major/minor arms + dust disc with inner hole toward GC
- F98 includes `old’ and `young’ stellar discs that are warped, spheroidal bar, and warped dust disc with inner hole toward GC
- R12 generally reproduces more structured features in the local intensity data, but both R12 and F98 ISRF models are consistent with data
ISRF Models: R12 and F98

- R12 and F98 produced noticeably different integrated energy density distributions that reflect the stellar and dust distributions.
- In and about the inner Galaxy there is a factor ~5 difference between the models, even though locally they are both reasonably consistent with the data.
Interstellar Emissions

Fractional Residual: \[
\frac{(\text{SA100-R12}) - (\text{SA0-Std})}{\text{SA0-Std}}
\]
SA100 = 100% sources in spiral arms

- Reference case: 2D (SA0) + Std ISRF from GALPROP
- Fractional residual maps \([(\text{model-ref})/\text{ref}]\) for other combinations: SA50-R12, SA50-F98, SA100-R12, SA100-F98
- CR src and ISRF models with arms produce a density-squared effect because of enhanced CR and ISRF energy densities in these regions, produces `doughnut' in residual maps and the effect is energy-dependent

SA100-R12 @ 10.6 MeV
SA100-R12 @ 1.2 GeV
FERMI-LAT OBSERVATIONS OF HIGH-ENERGY γ-RAY EMISSION TOWARDS THE GALACTIC CENTER

M. Ajello1, A. Albert2, W. B. Atwood3, G. Barbiellini4, D. Bastieri6, K. Bechtol8, R. Bellazzini9, E. Bissaldi10, R. D. Blandford5, E. D. Bloom5, R. Boning11,12, E. Bottacini1, T. J. Brandt13,14, J. Bregier13,14, P. Bruel5, R. Buehler16, S. Buson6,7, G. A. Callandre17,18, R. A. Cameron5, R. Caputo5, M. Caragiulo19,20, P. A. Caraveo18, C. Cecchi19,20, A. Cheethman21,24, J. Chiang7, G. Chiaro7, S. Ciprini19,22,23, J. Cohen-Tanugi14, L. R. Cominsky24, J. Conrad25,26,27, S. Cutini19,22,23, F. D’Ammando28,29, A. de Angelis30, F. de Palma10,31, R. Desiante11,32, L. Di Venere33, P. S. Drell2, C. Favuzzi10,33, E. C. Ferrara13, P. Fusco10,33, F. Gargano10,33, D. Gasparrini19,22,23, N. Giglietto10,33, P. Giommi22, F. Giordano10,33, M. Giroletti38, T. Glanzman2, G. Godfrey3, G. A. Gomez-Vargas34,35, I. A. Grenier36, S. Guarise13, M. Gustafsson37, A. K. Harding13, J. W. Hewitt38, A. B. Hill2,39, D. Horan15, T. Jogler3, G. Johannesson40, A. S. Johnson2, T. Kamae1, C. Karin42, J. Knödlseder43,44, M. Kusk1, S. Larsson26,45, L. Latronico41, J. Li46, L. Li26,45, F. Longo5,5, F. Loparco10,33, M. N. Lovellette47, P. Lubrano19,22, J. Magill48, S. Malder11, D. Malyshev2, A. Manfreda9, M. Mayer16, M. N. Mazzotta10, P. F. Michelson5, W. Mitthumsiri39, T. Mizuno30, A. A. Moiseev48,51, M. E. Monzani5, A. Morsseli34, I. V. Moskalenko2, S. Murgia52, E. Nuss14, M. Ohno52, T. Ohsugi50, N. Omodei5, E. Orlando2, J. F. Ormes53, D. Paneque2,69, M. Pesce-Rollins2,9, F. Peron14, G. Pivato5, T. A. Porter5, S. Raino10,33, R. Rando2,5, M. Razzano2,26, Q. Reimer13, S. Ritzi2,63, M. Sánchez-Conde25,26,27, P. M. Saz Parkinson1,34, C. Sgrò2, E. J. Siskind38, D. A. Smith5,5, F. Spada5, G. Spandre9, P. Spinelli10,33, D. J. Suson38, H. Tajima1,59, H. Takaishi52, J. B. Thayer5, D. F. Torres46,60, G. Tosti19,20, E. Troja13,48, Y. Uchiyama61, G. Vianello5,6, B. L. Winer52, K. S. Wood2, G. Zaharijas4,5, and S. Zimmer1

1 Department of Physics and Astronomy, Clemson University, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA; tporter@stanford.edu

2 W. W. Hansen Experimentl Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA; tporter@stanford.edu

3 Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064, USA

4 Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste, Italy

5 Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy

6 Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy

7 Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy

8 Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706, USA

9 Dipartimento di Fisica Generale "A. Amendola" Padova, Italy

10 Dipartimento di Fisica Generale "A. Amendola" Padova, Italy

11 Dipartimento di Fisica Generale "A. Amendola" Padova, Italy

12 Dipartimento di Fisica Generale "A. Amendola" Padova, Italy
All-Sky Residuals 1-3.16 GeV

Data-baseline (Pulsars)

Ajello et al. `16 (no masks)
All-Sky Residuals 1-3.16 GeV

Data-baseline (Pulsars)

Ajello et al. `16 (no masks)
Interpreting the scaling results

Gamma-ray intensity

CR energy density in-plane

Red curves: No CR bulge
Black curves: With CR bulge
Dot: IC
Dash: π^0
Dash-dot: Brem
Solid: total
Injected CR power for the `bulge/bar' is ~25x smaller than the arms for the residuals shown. Can be done with CR nuclei/leptons or leptons only.

Ajello et al. `16 (no masks)
Summary of Fits for 15° x 15° RoI

Fit to data requires increase over baseline. Interpretation with 2D models unclear – 3D bulge/arm models provide more physical basis for understanding these results.
Coming soon: 3D atomic and molecular gas models

- Forward-folding model fitting method
- ML fit to HI LAB and DHT CO surveys
- Build model iteratively: 2D disc, add warp, bulge/bar, flaring (outer Galaxy), spiral arms
- Spiral location and shape same for HI and CO but scale-heights and normalisations differ
- Each arm has free normalisation in model fitting method
Effect of 3D gas models for gamma-ray data analysis

- Ratio of 3d/2d gas model, same CR source distribution (SA0/Pulsars)

3d/2d fractional difference @ 1 GeV
Summary

- GALPROP is officially of drinking age in the US (21+ years development)!
- New release v56 with many additions and optimisations: specific focus improving performance for full 3D CR and interstellar emission calculations.
- New 3D models for ISM density distributions have been developed: ISRF (Porter et al.) and Gas (Johannesson et al.).
- Modelling with upcoming GALPROP release using 3D CR source and ISRF densities show new features in residual maps compared to 2D-based reference calculations.
- The 3D models provide a plausible explanation for the puzzling results from the analysis based on 2D axisymmetric models.
- CR sources in spiral arms and central bulge/bar in combination with 3D ISRF models are required.
- Coming soon: results with 3D gas and CR sources
- Check out galprop.stanford.edu and galprop.stanford.edu/webrun for configuration files and data products and facility to run code via browser