



# Characterization of low energy ionization signals from Compton scattering in a CCD Dark Matter detector

## Karthik Ramanathan

University of Chicago

<u>arXiv:1706.06053</u>

(Accepted PRD)



TeVPA 2017/08/07

## Motivation

- Solid state ionization detectors are integral component of next-generation dark matter searches due to their very low noise and the small band gap of semiconductor targets.
- However in this low energy search regime (2-1000e-) dominant background from environmental radiation are lowenergy electron recoils due to small-angle Compton Scattering of external gammas.
- Flux is orders of magnitude higher than fast neutrons the usual consideration for external source of signals
- Irreducible Electron Recoil background → any potential Dark Matter can only be identified by energy spectrum.
- $\rightarrow$  Need complete understanding of low-energy spectral features.
- $\rightarrow$  Expose UChicago Silicon CCD detector to gamma source

## Motivation II

## Expose to γ-ray source

Compton features + ?



# Modeling

- Generically scattering cross-section given by textbook
  Klein-Nishina. However dealing with bound electrons.
  - Expect effectively flat spectrum (with these added steps)
- Impulse Approximation: Each atomic shell treated independently. Bound electrons are modeled as free with constrained momentum distribution derived from boundstate wave function.
  - Ribberfors 1982 (<u>https://doi.org/10.1103/PhysRevA.26.3325</u>)
  - Valid in our region of interest with low energy and momentum transfers
- Useful since we can obtain differential cross section expressions per atomic electron with quantum numbers n, l

## **Expected Spectrum**



## Silicon Target

- Visible Step features
  - Binding Energies

Provide linear parameterization (since in aggregate an unknown spectrum can be fit with straight lines...)

## II. Experiment

# Testbed (UChicago)



## II. Experiment

# **Detection Principle**



# 1x1 Data & MCNP Simulation Model



# Fano Factor (@ 130 K)



## Results - Cobalt



## Results - Americium



# L-Step

- Fano model should be valid
  - External modeling of all low-energy electrons emitted in Auger cascade (RELAX atomic relaxation spectra code)
- ▶ Calibration with Oxygen fluorescence x-rays  $\rightarrow$  21 eV resolution at  $E_g = 525 \text{ eV}$
- Interpret decreased resolution as coming from softened L step in electron spectrum
  - → Assumption that each atomic shell can be treated as independent does not hold? Many-body effects?

# Model

- From 0.5-4 keV
- Initial 3 parameter model with fixed step heights discarded
- 6 parameter model
  - $\rightarrow$  2 slopes
  - $\rightarrow K$  step height
  - → L step location and resolution ( $\sigma_L$ )
  - $\rightarrow$  Normalization

$$f(E) = A \times \begin{cases} a_1(E - E_K) + 1 & E \ge E_K \equiv E_{10} \\ a_2(E - E_K) + b_2 & E_L \le E < E_K \\ b_3 & E < E_L, \end{cases}$$

$$b_3 = \frac{Z - 10}{Z - 2} [b_2 + a_2(E_L - E_K)],$$

# Model II

- 6 parameter model
  - $\rightarrow$  2 slopes
  - $\rightarrow K$  step height
  - → L step location and resolution
  - $\rightarrow$  Normalization
- Able to model fit in <4 keV range to within 5% without accurate background knowledge
- Flattens out at high
  γ energies



# Takeaway

## <u>Primary</u>

- Report, for first time, spectral Compton features associated with the atomic structure of the target.
- Characterize the spectrum of low-energy ionization signals from electrons Compton scattered by radiogenic γ-rays, vital for future DM searches
- Validate applicability of simple linear model

## <u>Secondary</u>

- Demonstrate again CCD resolution down to ~60 eV
- Measure Fano Factor @ operating temperature

Remains an open question as to what happens at low energies?





# **Questions?**



## **Exclusion** Plot



17

## Impulse Approximation

Expression valid only for  $E > E_{nl}$ , the target electron's binding energy. Otherwise it's 0 as the min. energy photon can lose is that required to free the target electron

 $J_{nl}(p_z)$  are the Compton profile functions, which encode the momentum distribution of the target electron and is taken from tabulated data. Further the integral can only be evaluated numerically.

## Source Selection



# Binning

- Hardware adding of neighboring pixels at serial register
  - e.g. 1×100 → 100 rows (y) transferred into serial register before clocking in x (column) direction
  - Fewer pixels but same noise per pixel



## Dataset

Cobalt dataset taken early 2016, Americium early 2017

V. Backup

- Single 4k x 2k CCD (2.2 g mass)
- Analysis conducted using 4x4 data (1x1 used for validation)

| Binning      | Source      | N images | $V_{sub}$ | Event density         |
|--------------|-------------|----------|-----------|-----------------------|
|              |             |          | [V]       | $[\mathrm{keV}^{-1}]$ |
| $1 \times 1$ | $^{57}$ Co  | 1981     | 45        | $3.5 \times 10^{4}$   |
|              | Background  | 1235     | 45        | $4.3 \times 10^{3}$   |
|              | $^{241}$ Am | 971      | 45        | $4.7 \times 10^{4}$   |
|              | Background  | 2062     | 45        | $2.4 \times 10^{3}$   |
| $4 \times 4$ | $^{57}$ Co  | 1981     | 127       | $2.5 \times 10^{5}$   |
|              | Background  | 10276    | 127       | $2.6 \times 10^{2}$   |
|              | $^{241}$ Am | 9828     | 127       | $2.5 \times 10^{5}$   |
|              | Background  | 2062     | 127       | $1.1 \times 10^{3}$   |

## Image Processing

- ▶ Pedestal (DC offset) subtraction → Pixel values centered at 0 with noise  $\sigma_{\rm pix}$
- Mask "hot" pixels & lattice defects (~10% removed)
- Energy calibration done with fluorescence & P.E peaks
  - Linearity previously demonstrated using this setup
- IxI datasets
  - Clustering done by IIxII moving window maximizing difference in log-likelihood between 2 hypotheses: 2D Gaussian+Noise or just Noise.
- 4x4 datasets
  - Clusters identified as ionization events with contiguous pixels > 4  $\sigma_{\rm pix}$

# 1x1 Diffusion Modeling



Verifies that recorded spatial distribution is consistent with the signal from Compton scattering, with negligible contamination from surface events.

# Efficiency



## Pixel Cuts



 Energy threshold chosen to exclude readout noise.

 Negligible single pixel readout noise
 60 eV, but present for 2+ pixels until 80 eV.

Consider only single pixel events between 60-80 eV

## "Sensei"

 Repeat measurement in near future

 Non destructive "skipper" readout R&D project.

 Perform N uncorrelated measurements for ~I/Sqrt(N) noise reduction

