MiniBooNE
Dark Matter Search

Ranjan Dharmapalan
Argonne National Laboratory
for the MiniBooNE-DM Collaboration

TeVPA 2017 Columbus OH
Dark Matter particles could belong to a Hidden Sector with coupling to the Standard Model

New gauge boson increases DM annihilation cross section to give correct relic density

- New vector mediator could be solution to g-2 anomaly

M. Pospelov, Phys. Rev. D 80 095002 (2009)
Explore an interesting region of phase space

What about here?

Relativistic dark matter for sufficient recoil energy in the detector

New mediators to satisfy cosmological constraints

Sub-GeV regime:
Well motivated, less explored
Accessible to accelerator beam dump experiments

An intense beam, a large and sensitive detector, and a mechanism to suppress the Standard Model backgrounds.
• 8 GeV protons from FNAL Booster
• Be target for neutrino production
 540 m from the detector
• 50 ‘decay pipe’ with steel dump at the end

Well understood beam and detector
CCQE and NCE interactions

- Charged Current Quasi-Elastic
- W boson mediated
- Single muon and decay electron

- Neutral Current Elastic
- Z boson mediated
- Scintillation with no muon or pion

Double differential cross section measurement

NCE cross section measurement and ratio to CCQE

CCQE and NCE interactions

- Charged Current Quasi-Elastic
- W boson mediated
- Single muon and decay electron

Double differential cross section measurement

NCE cross section measurement and ratio to CCQE

Dark matter will mimic this interaction

Beam dump mode: Reducing neutrino background

- Protons steered off-target towards 50 Fe dump
- Charged mesons absorbed before decay to neutrinos
- Neutral mesons unaffected
Beam dump mode: Reducing neutrino background

- Flux reduced by factor \(~30\)
- Event rate reduced by factor of \(~50\)
- Stable run for 9 months in this mode
Event selection

- Protons detected by scintillation light
- Neutrons via secondary scatter off protons
- Selection cuts to isolate single track proton-like events and reject beam related and cosmic backgrounds
 - Event coincident with beam time
 - No veto activity
Dark Matter simulation

- BdNMC: Proton beam fixed target simulation tool
- Includes Π^0, η and Bremsstrahlung processes

deNiverville, Chen, Pospelov, Ritz

https://github.com/pgdeniverville/BdNMC/releases
Analysis Strategy

- Simultaneous fit to 4 distributions
 - CCQE_ν neutrino mode
 - CCQE_{off} beam-dump mode
 - NCE_ν neutrino mode
 - NCE_{off} beam-dump mode

- CCQE ratios help reduce flux uncertainty while NCE ratio reduce cross section uncertainty
Results

90% Confidence Limits

- CL on value of $\varepsilon^4 \alpha_D$ for given m_V and m_χ
- Slice to compare to other experiments
- Considered on-shell decays ($m_V > m_\chi$)

- Data consistent with background

<table>
<thead>
<tr>
<th>#events</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam unrelated bkg</td>
<td>697</td>
</tr>
<tr>
<td>Beam rel: ν_{det} bkg</td>
<td>775</td>
</tr>
<tr>
<td>Beam rel: ν_{dirt} bkg</td>
<td>107</td>
</tr>
<tr>
<td>Total Bkg</td>
<td>1579</td>
</tr>
<tr>
<td>Data</td>
<td>1465</td>
</tr>
<tr>
<td>Fit Results</td>
<td>1548</td>
</tr>
</tbody>
</table>

$\varepsilon^4 \alpha_D$ at 90% CL
Results

solid lines: DM coupling to quarks/nucleons
solid-dashed lines: DM coupling to electrons

Future results from MiniBooNE-DM

Dark matter Δ resonance scattering with π^0
- Neutrino NC π^0 main background
- Clean signal, low beam unrelated background

Dark elastic scattering off electrons
- Neutrino-electron main background
- Very forward peaked signal

Using time-of-flight
- Dark matter delayed as compared to neutrinos
Future Prospects

- Number of high-resolution detectors in pipeline on BNB (SBN program)
- A dedicated beam-dump idea
- LOI submitted to Fermilab PAC

For details, see talk by R. Van de Water @ U.S. Cosmic Visions 2017
Summary:

• First dedicated proton beam dump search for dark matter by MiniBooNE-DM

• Published results for dark matter -nucleon scattering. Analysis on other dark matter scattering channels ongoing

• Exploring future opportunities at Fermilab SBN program