Diverse Galactic Rotation Curves & Self-Interacting Dark Matter

Hai-Bo Yu University of California, Riverside

TeVPA, August 7, 2017

See Anna Kwa's talk

Review for Physics Reports: Sean Tulin, HBY arXiv: 1705.02358

ACDM Cosmology

Success on large scales: larger than ~10-100 kpc

• Crisis on small scales: galactic scales, <10-100 kpc

Core vs. Cusp Diversity Missing Satellites Too-Big-To-Fail

Core vs. Cusp Problem

DM-dominated systems (dwarfs, LSBs)

$$\frac{r}{r/r_s(1+r/r_s)^2}$$

universal density profile, NFW profile ρ_s and r_s are strongly correlated

Navarro, Frenk, White (1996)

Many dwarf galaxies prefer a shallow density core, instead of a steep cusp

The Diversity Problem

See also Kuzio de Naray, Martinez, Bullock, Kaplinghat (2009)

A Big Challenge for ACDM

The unexpected diversity of dwarf galaxy rotation curves

Kyle A. Oman^{1,*}, Julio F. Navarro^{1,2}, Azadeh Fattahi¹, Carlos S. Frenk³, Till Sawala³, Simon D. M. White⁴, Richard Bower³, Robert A. Crain⁵, Michelle Furlong³, Matthieu Schaller³, Joop Schaye⁶, Tom Theuns³

¹ Department of Physics & Astronomy, University of Victoria, Victoria, BC, V8P 5C2, Canada

² Senior ClfAR Fellow

³ Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, Durham DH1 3LE, United Kingdom

⁴ Max-Planck Institute for Astrophysics, Garching, Germany

⁵ Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, United Kingdom
 ⁶ Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands

The diversity is expected if dark matter has strong self-interactions

Self-Interacting Dark Matter

Self-interactions thermalize the inner halo

Modelling SIDM Halos

• The model works well remarkably

DM velocity dispersion Simulations: 119 km/s Model: 122 km/s

also tested with MIT/UCI simulation results

MIT: Vogelsberger et al. (2012) UCI: Rocha et al., Peter et al. (2012)

with Kaplinghat, Tulin (PRL 2015) with Kamada, Kaplinghat, Pace (PRL 2016)

Addressing the Diversity Problem

DM self-interactions thermalize the inner halo

DM-dominated galaxies: Lower the central density and the circular velocity

Isothermal distribution

$$\sigma_X \sim e^{-\Phi_{\rm tot}/\sigma_0^2} \sim e^{-\Phi_X/\sigma_0^2}$$

with Kamada, Kaplinghat, Pace (PRL 2016)

High Luminous Galaxies

• DM self-interactions tie DM together with baryons

Thermalization leads to higher DM density due to the baryonic influence

$$\rho_X \sim e^{-\Phi_{\rm tot}/\sigma_0^2} \sim e^{-\Phi_{\rm B}/\sigma_0^2}$$

with Kamada, Kaplinghat, Pace (PRL 2016) with Kaplinghat, Keeley, Linden (PRL 2013) with Kaplinghat, Linden (PRL 2013)

Solving the Diversity Problem

See Anna's talk: ~120 galaxies

- Scatter in the halo concentration
- Spread in the baryon distribution
 Self-interactions tie the DM and baryon distributions together

with Kamada, Kaplinghat, Pace (PRL 2016) (30 galaxies, Vmax=25-300 km/s)

Simulations

Controlled N-body simulations: with Creasey, Sameie, Sales, Vogelsberger, Zavala (MNRAS 2016)

Density Cores in Galaxy Clusters

Newman et al. (2013)

Clusters: $M_{halo} \sim 10^{14} - 10^{15} M_{\odot}$ Galaxies: $M_{halo} \sim 10^{9} - 10^{12} M_{\odot}$ with Kaplinghat, Tulin (PRL 2015)

SIDM from Dwarfs to Clusters

- Consider 5 THINGS dwarfs (red), 7 LSBs (blue), 6 galaxy clusters (green)
- 8 simulated halos with $\sigma/m=1 \text{ cm}^2/\text{g}$ (gray) for calibration

DM halos as "particle colliders"

with Kaplinghat, Tulin (PRL 2015)

Measuring Dark Matter Mass

• Self-scattering kinematics determines SIDM mass

Particle Physics of SIDM

• Familiar examples in the visible sector

SIDM at Colliders

• Striking collider signals

pp→Monojet+Missing Energy

An, Echenard, Pospelov, Zhang (PRL 2015) Tsai, Wang, Zhao (PRD 2015) Shepherd, Tait, Zaharijas (PRD 2009)

SIDM Direct Detection

with Del Nobile, Kaplinghat (JCAP 2015) with Kaplinghat, Tulin (PRD 2013)

Experiments with different targetsAnnual modulation

Particle Properties

Positive observations	σ/m	$v_{ m rel}$	Observation	Refs.
Cores in spiral galaxies	$\gtrsim 1~{ m cm}^2/{ m g}$	$30-200~{ m km/s}$	Rotation curves	[77, 93]
(dwarf/LSB galaxies)				
Too-big-to-fail problem				
Milky Way	$\gtrsim 0.6~{ m cm^2/g}$	$50 \ \mathrm{km/s}$	Stellar dispersion	[87]
Local Group	$\gtrsim 0.5~{ m cm^2/g}$	$50 \ \mathrm{km/s}$	Stellar dispersion	[88]
Cores in clusters	$\sim 0.1 \ {\rm cm^2/g}$	$1500 \ \mathrm{km/s}$	Stellar dispersion, lensing	[93, 103]
A 111 2007 1-11	1 5 2 /	1500 1 /	DM colores offerst	[104]
Abeli 3027 subilito merger	/~ 1.0 Cm /g	1000 KIII/ 5	Divi-galaxy Uliset	
Abell 520 cluster merger	$\sim 1~{ m cm^2/g}$	$2000-3000~\mathrm{km/s}$	DM-galaxy offset	[105, 106, 107]

Constraints

Halo shapes/ellipticity	$\lesssim 1~{ m cm^2/g}$	$1300 \ \mathrm{km/s}$	Cluster lensing surveys	[86]
Substructure mergers	$\lesssim 2~{ m cm^2/g}$	$\sim 500-4000~\rm km/s$	DM-galaxy offset	[92, 108]
Merging clusters	$\lesssim {\rm few} \; {\rm cm}^2/{\rm g}$	$2000-4000~\rm km/s$	Post-merger halo survival	Table II
			(Scattering depth $\tau < 1$)	
Bullet Cluster	$\lesssim 0.7~{ m cm^2/g}$	$4000 \ \mathrm{km/s}$	Mass-to-light ratio	[81]

Tulin, HBY (2017)

