### Self-interacting Dark Matter:

An Explanation for Diversity & Uniformity in Galactic Rotation Curves?

Anna Kwa (UC Irvine) Aug. 7<sup>th</sup> 2017 @ TeVPA 2017, Columbus OH

with Manoj Kaplinghat (UC Irvine), Tao Ren (UC Riverside), & Haibo Yu (UC Riverside)



Galaxies with similar V<sub>flat</sub> (proxy for mass) can have very different inner rotation curves



Galaxies with similar V<sub>flat</sub> (proxy for mass) can have very different inner rotation curves



Galaxies with similar  $V_{flat}$  (proxy for mass) can have very different inner rotation curves



Galaxies with similar V<sub>flat</sub> (proxy for mass) can have very different inner rotation curves

...but also very uniform in other aspects.



"Radial acceleration relation" (McGaugh+16)

Tight relation between  $g_{baryons}$  and  $g_{obs}$ , despite the wide range mass distributions in galaxies

Signature of MOND?
Or, dark matter that can respond to the influence of baryons?

Need to assume stellar M/L ratio

#### **SIDM** interactions

- + scatter in concentration-mass relation
  - + variety in baryon distributions
- = observed diversity in rotation curves?

If so, do other quantities/relations (stellar mass-to-light ratios, cosmological concentration-mass relation) also agree with accepted ranges?

Do we recover the radial acceleration relation?

# How is the density profile in an SIDM halo determined?









### scatter in concentration-mass relation leads to scatter in core radius r<sub>1</sub>



Self-interacting dark matter can assume very different (cuspy/cored) inner density profiles in similar mass galaxies



Dark matter only simulations: CDM halos have higher central densities than SIDM halos Self-interacting dark matter can assume very different (cuspy/cored) inner density profiles in similar mass galaxies



DM+baryons simulations

Thermalization in innermost regions of SIDM halos: DM profile influenced by baryons' gravitational potential

Two methods of finding best-fit SIDM profiles from rotation curves and surface brightness profiles (**SPARC sample**, Lelli+16):

- 1. Fit using template grid of baryonic disk potentials and NFW halos
- 2. MCMC fit (core density, core 1D dispersion, M/L)

### **Specify:**

Fixed\* self-interaction cross section  $\sigma/m$ 

\* assumes that any variation in scattering cross section within a velocity-dependent SIDM model is small within mass ranges considered

Cosmological  $v_{max}$  -  $r_{max}$  (a.k.a. concentration-mass) relation from N-body simulations

Red=dark matter
Blue=total baryons
Green=disk
Grey=total model





Red=dark matter
Blue=total baryons
Green=disk
Grey=total model





Fits prefer SIDM cross sections ~3 cm<sup>2</sup>/g over lower cross sections or collisionless DM



### Strong baryonic feedback

### SIDM under the influence of baryons





Santos-Santos+17, NIHAO collaboration

This work

### Stellar mass to light (M/L) ratios from MCMC fits



### Stellar mass to light (M/L) ratios from MCMC fits



General agreement with population synthesis models  $(M/L \sim 0.4-0.6)$ 

### Stellar mass to light (M/L) ratios from MCMC fits



Radial variation in stellar populations driving M/L higher? Beware of bias from inner data points

### $V_{max} - R_{max}$ relation (concentration-mass)



## Use M/L values to predict g<sub>baryon</sub> and recover radial acceleration relation





Scatter in data points from empirical radial acceleration relation is equal to / less than McGaugh+16

$$g_{\rm obs} = \mathcal{F}(g_{\rm bar}) = \frac{g_{\rm bar}}{1 - e^{-\sqrt{g_{\rm bar}/g_{\dagger}}}}$$

McGaugh+16 (M/L fixed to 0.5)



This work
(M/L ratios freely fit to data
with SIDM)



#### Takeaway message

Self-interacting dark matter with interaction cross sections ~few cm²/g can fit a *diversity* of rotation curve shapes across a variety of galaxy masses...

... while also recovering the *uniformity* in the radial acceleration relation between  $g_{baryon}$  and  $g_{obs}$ .