#### Cosmological results from the SDSS -III and (IV) (extended) Baryon Oscillation Spectroscopic Survey





Ashley J. Ross + BOSS and eBOSS collaborations

## Dark Energy

- Expansion of Universe is accelerating!
- Dominant component of Universe today (~70%)
- Consistent with "cosmological constant" Λ
- something like 10<sup>100</sup> off (smaller) from vacuum energy estimate
- ???



## Measuring Dark Energy

- Equation of state  $w = p/\rho$
- Cosmological constant,  $\Lambda$ , w=-1
- common parameterization is
   w(a) = w<sub>0</sub>+(1-a)w<sub>a</sub>
- scale factor,  $a = \frac{1}{1+z}$



# Baryon Acoustic Oscillations

 early Universe radiation pressure/ matter density -> standing wave in baryon density







(images from Martin White)



# Baryon Acoustic Oscillations



• CMB measurement gives calibrated "standard ruler" for feature found in galaxies





## Finding BAO

 Need to construct large, 3D maps

(Imaging + spectroscopy)
 SDSS III Baryon Oscillation
 Spectroscopic Survey (BOSS):

 I.2 million galaxy redshifts,
 9300 deg<sup>2</sup>, 0.2 < z < 0.75</li>







### **BOSS** Galaxies

#### • 1.2 million galaxy redshifts, 9300 deg<sup>2</sup>, 0.2 < z < 0.75



### What BAO measures

Radial clustering measures H(z)

Transverse clustering measures D<sub>M</sub>(z) ± (1+z)D<sub>A</sub>(z)
 D<sub>V</sub>(z) = [czH<sup>-1</sup>(z)D<sub>M</sub><sup>2</sup>(z)]<sup>1/3</sup>; (spherical average)



### **BAO** Distance Ladder



#### Extra Information from full shape (FS)



- Measuring anisotropic clustering over all scales
- +modeling RSD
- -> structure growth measurement, better measurement of warping (AP effect)



#### **BOSS** Anisotropic Clustering for FS



• Degree of anisotropy depends on rate of structure growth, f

• f(a)=dln(D)/dln(a); (a = 1/[1+z]); f is determined given GR,  $\Omega_m(z)$ 

### Testing Dark Energy



### **Testing General Relativity**

• FS measures  $f\sigma_8$ , in GR f =  $\Omega_m^{0.557}$ 

Alam et al. arXiv:1607.03155







## Neutrino mass constraints: CMB+BAO, BOSS DR12



#### eBOSS

- Use SDSS telescope/spectrograph to extend BAO to z > 0.6
- 7500 deg<sup>2</sup> in SDSS imaging footprint
- Supplement SDSS with infrared data from WISE
- 3x10<sup>5</sup> LRGs 0.6 < z < 1.0
- 2x10<sup>5</sup> ELGs 0.7 < z < 1.1
- $6 \times 10^5$  quasars 0.8 < z < 2.2



### First eBOSS BAO measurement

- SDSS IV extended BOSS (eBOSS) DR14 quasar sample
- 150,000 quasars with 0.8 < z < 2.2
- 4.4% distance measurement to z=1.5



### Updated BAO Distance Ladder



## Testing Dark Energy with only BAO

- Treat BAO as \*uncalibrated\* standard ruler
- BOSS galaxies + eBOSS quasars >  $3\sigma$  detection of DE
- All BAO,  $6.5\sigma$  detection!



### Conclusions

- BOSS + eBOSS provide powerful tests of dark energy
   Consistent with ΛCDM
- Look for more eBOSS results coming soon
- Sets stage for DESI, should shrink contours by ~factor of

### What BOSS measures: Combined

- Three BAO analyses and four full-shape analyses have been combined
- 9x9 likelihood: 3 redshift bins/3 parameters



#### Tension with direct H<sub>0</sub> measurements



### BAO is Robust!

- Observational systematics have 13σ effect on clustering
- No effect on BAO!
- Similar results found for BOSS (Ross et al. 2012, 2017)
- Theoretical systematics (e.g., galaxy bias) < 0.5%</li>

![](_page_22_Figure_5.jpeg)

#### Reconstruction

![](_page_23_Figure_1.jpeg)

Figures from Padmanabhan et al. 2012

Removes RSD effects

### Coming Soon

DRI4 LRG data and DESY3 data already observed

![](_page_24_Figure_2.jpeg)

### DESI

- Dark Energy Spectroscopic Instrument being built
- Goes on 4 meter Mayall telescope in 2019
- Basically, an order of magnitude improvement in BAO constraining power

![](_page_25_Figure_4.jpeg)

## SDSS-III BOSS

- Sloan Digital Sky Survey
- Uses Sloan telescope at Apache Point NM
- BOSS uses:

 SDSS ugriz imaging to select: 
 f million galaxies
 f sources
 f sources
 Out of 3.6×10<sup>8</sup> sources)

 BOSS spectrograph 3600Å < λ < 10,000Å
 </li>

 $R = \lambda / \Delta \lambda = 1300 - 3000$ 1000 spectra at a time

![](_page_26_Picture_6.jpeg)

### **BOSS** Galaxies

#### •1.2 million galaxy redshifts, 9400 deg<sup>2</sup>, 0.2 < z < 0.75

![](_page_27_Figure_2.jpeg)

### **BOSS Galaxies**

![](_page_28_Figure_1.jpeg)

## Galaxy Clustering

![](_page_29_Figure_1.jpeg)

- Power spectrum  $P(k) = \langle \delta_k(k)^2 \rangle$
- Correlation function  $\xi(r) = \langle \delta(x) \delta(x+r) \rangle$
- k~2π/r
- r and s interchangeable

Ashley J. Ross

LineA Webinar

#### Theoretical details

theoretical clustering of matter

#### observed clustering of galaxies Galaxy bias: light ≠ mass

![](_page_30_Picture_6.jpeg)

### Impact on BAO

![](_page_31_Figure_1.jpeg)

Ashley J. Ross

LineA Webinar

### Red and Blue Galaxies

- Galaxy population bi-modal red/ blue
- ideal for testing systematic effect from galaxy evolution

![](_page_32_Figure_6.jpeg)

![](_page_32_Figure_7.jpeg)

Ashley J. Ross

LineA Webinar

#### Red/Blue BOSS BAO

![](_page_33_Figure_4.jpeg)

Ashley J. Ross

LineA Webinar

#### **BOSS** imaging systematics

![](_page_34_Figure_4.jpeg)

Ashley J. Ross

LineA Webinar

#### Stars Occult Area

![](_page_35_Figure_4.jpeg)

Ashley J. Ross

LineA Webinar

#### Stars and BOSS Surface Brightness

- Spectroscopic results confirm galaxy vs. stellar density relationship
- Depends on surface brightness
- Corrected with weights based on linear fits

![](_page_36_Figure_7.jpeg)

Ashley J. Ross

LineA Webinar

### Effect on BOSS clustering

![](_page_37_Figure_4.jpeg)

Ashley J. Ross

LineA Webinar

## Systematics in final data set

![](_page_38_Figure_4.jpeg)

- Stellar density effect remains strong
- Significant effect with seeing due to morphological star/ galaxy separation cuts

![](_page_39_Figure_0.jpeg)

•• •••••••••

Only stellar density has strong effect over full footprint (LOWZE3 result is over full footprint, but it is only 660  $deg^2$  in combined) Simulating effects yield no bias in BAO, negligible effect on statistical uncertainty

### What BOSS measures

- Pre-reconstruction, full-shape with RSD modeling:
  - D<sub>V</sub>(z)
  - $F_{AP}(z)$  (with extra information from anisotropic clustering at all scales)
  - fσ<sub>8</sub>

![](_page_40_Figure_5.jpeg)