Cosmology on small scales: Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime

Ben Wibking Department of Astronomy Ohio State University

with Andres Salcedo, David Weinberg, Lehman Garrison, Douglas Ferrer, Jeremy Tinker, Daniel Eisenstein, Marc Metchnik, and Philip Pinto

Why do we care?

- Is there a discrepancy between high-redshift and low-redshift probes of cosmology?
 - PLANCK measurements favor a (marginally) higher amplitude of matter fluctuations than WMAP
 - Some weak lensing analyses (e.g., CFHTLens, KiDS) have favored a (significantly) lower amplitude of matter fluctuations
 - If found, tension is $\sim 2\sigma$, depending on the analysis

 $(S_8 \propto \sigma_8 \Omega_m^{0.5})$

Galaxy-galaxy lensing

Source plane

Small scale systematics?

e.g. Berlind & Weinberg (2002)

fiducial model

 $\sigma_{\log M}$

lpha

 Q_{env}

Makes $\langle N|M_h \rangle$ a function of ~8 Mpc/*h*-scale overdensity

Emulator methodology

- 1. Run 40 N-body simulations with different cosmological parameters chosen from within the Planck 2015 wCDM allowed space (currently only a subset involving σ_8 , Ω_M)
- 2. Populate dark matter halos with galaxies according to a phenomenological model of galaxy counts as a function of halo mass *and* environmental density (extended HOD model)
- 3. Compute the galaxy auto-correlation function and galaxy-matter cross-correlation function
- 4. Interpolate ('emulate') between models across the allowed parameter space
- 5. Compute projection integrals to obtain observables w_p and γ_t

Emulator methodology

- 1. Run 40 N-body simulations with different cosmological parameters chosen from within the Planck 2015 wCDM allowed space (currently only a subset involving σ_8 , Ω_M)
- 2. Populate dark matter halos with galaxies according to a phenomenological model of galaxy counts as a function of halo mass *and* environmental density (extended HOD model)
- 3. Compute the galaxy auto-correlation function and galaxy-matter cross-correlation function
- 4. Interpolate ('emulate') between models across the allowed parameter space
- 5. Compute projection integrals to obtain observables w_p and γ_t

Emulator methodology

- Interpolating between models this can be nontrivial:
 - Introduced to cosmology by the 'CosmicEmu' Gaussian process interpolation of the nonlinear power spectrum obtained from simulations (Heitmann+ 2009)
 - We instead interpolate various scale-dependent quantities using a (1st- or 2nd-order) Taylor expansion (similar to methodology of Mandelbaum+ 2013):
 - scale-dependent bias b_{g} ,
 - (scale-dependent) correlation coefficient r_{gm} , and
 - (scale-dependent) ratio of the nonlinear-to-linear matter correlation function (we denote this b_{nl})

Galaxy-galaxy lensing and clustering signal on scales $0.5 < r_p < 30$ Mpc/*h*

Covariance matrices and forecasting for LOWZ GGL with SDSS imaging

 $(n_{gal} = 3 \times 10^{-4} h^3 \text{ Mpc}^{-3}, \sim 1 \text{ galaxy arcmin}^{-2})$

- Cosmological constraints forecasted: 1.8% uncertainty on $\sigma_8 \Omega_m^{0.58}$
- Using only scales
 >2 Mpc/h (lensing)
 and >4 Mpc/h
 (clustering), the
 constraints degrade
 to 3.8%
- More precise constraints by a factor of >2, equivalent to >4x the survey area without small scales

cumulatively (from the left) marginalized parameters

Conclusions

- Cosmology on small scales is promising, but will depend on control of astrophysical systematics
- We can verify that our recovery of cosmology is unbiased with mock cosmological analysis of hydrodynamic simulations, other models of galaxy formation that are completely different
- We can test and rule out models of the galaxy-halo occupation jointly with cosmological models
- The future: considering additional cosmological parameters using the full grid of simulations, fitting to CMASS + DES lensing measurements

Questions?