A New Limit on CMB Circular Polarization from SPIDER

Johanna Nagy
for the SPIDER collaboration
arXiv: 1704.00215
Published in ApJ
Stokes Parameters

Plane wave traveling in the z direction

\[E = \left(E_x e^{i\phi_x} \hat{x} + E_y e^{i\phi_y} \hat{y} \right) e^{i\omega t} \]

\[I = \langle E_x^2 \rangle + \langle E_y^2 \rangle \quad U = \langle 2E_x E_y \cos (\phi_x - \phi_y) \rangle \]
\[Q = \langle E_x^2 \rangle - \langle E_y^2 \rangle \quad V = \langle 2E_x E_y \sin (\phi_x - \phi_y) \rangle \]
Stokes Parameters

Plane wave traveling in the z direction

\[E = \left(E_x e^{i\phi_x} \hat{x} + E_y e^{i\phi_y} \hat{y} \right) e^{i\omega t} \]

\[I = \langle E_x^2 \rangle + \langle E_y^2 \rangle \quad U = \langle 2E_x E_y \cos (\phi_x - \phi_y) \rangle \]
\[Q = \langle E_x^2 \rangle - \langle E_y^2 \rangle \quad V = \langle 2E_x E_y \sin (\phi_x - \phi_y) \rangle \]

Polarization

<table>
<thead>
<tr>
<th>+Q</th>
<th>+U</th>
<th>+V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Q > 0; U = 0; V = 0
(a) | Q = 0; U > 0; V = 0
(c) | Q = 0; U = 0; V > 0
(e) |
| Q < 0; U = 0; V = 0
(b) | Q = 0, U < 0, V = 0
(d) | Q = 0; U = 0; V < 0
(f) |
Stokes Parameters

Plane wave traveling in the z direction

\[E = (E_x e^{i\phi_x \hat{x}} + E_y e^{i\phi_y \hat{y}}) e^{i\omega t} \]

\[
\begin{align*}
I &= \langle E_x^2 \rangle + \langle E_y^2 \rangle & U &= \langle 2E_x E_y \cos(\phi_x - \phi_y) \rangle \\
Q &= \langle E_x^2 \rangle - \langle E_y^2 \rangle & V &= \langle 2E_x E_y \sin(\phi_x - \phi_y) \rangle
\end{align*}
\]
Methods of Generating Circular Polarization

1. Magnetic Fields
 - Primordial magnetic fields
 - Galaxy clusters
 - Pop III supernova remnants

2. Interactions with Known Particles
 - Scattering from neutral H
 - Cosmic neutrino background

3. Extensions to QED
 - Quantum vacuum corrections
 - Lorentz invariance violating operators
 - Axion fields

More complete list and references in King and Lubin 2016 (1606.04112)
Predicted V Signals are Small

Signal predictions rely on many assumptions
(some poorly constrained)
Predicted V Signals are Small

V predictions are much smaller than linear polarization measurements

King and Lubin 2016
1606.04112

CMB-S4 Science Book
1610.02743
CMB Circular Polarization Measurements

Lubin et al 1983
MIPOL: Mainini et al 2013 1307.6090
VLA: Partidge et al 1988
SPIDER Overview

- 16 day flight in Jan 2015
- 95 and 150 GHz
- ~0.5 degree beams
- 2nd flight with 285 GHz receivers planned for Dec 2018

Fraisse et al 2013, 1106.3087
Rahlin et al 2014, 1407.2906
HWP Polarization Modulators

Flight Operation
- Step in integer multiples of 22.5° every half day
- Use complementary angles for good Q/U coverage at each frequency
- 8 distinct HWP positions

- Modulate instrument polarization sensitivity
- Birefringent single-crystal sapphires
- 4 K operation
- Rotated in discrete steps
HWPs and Circular Polarization

A non-ideal HWP partially transforms circular polarization to linear

Power detected

\[d_V \sim s_\gamma \sin(2\theta_{\text{HWP}} - 2\xi_{\text{det}}) \]
Calculating SPIDER’s V-Coupling

Theoretical procedure can be found in Bryan et al 2010 and Savini et al 2006

Calculate \(s \) for each HWP based on

1. Measured physical HWP properties
2. Measured observing bands (for each receiver)
3. Source spectrum (CMB blackbody)

HWP Properties

- Refractive index and thickness of
- sapphire
- both AR coats
- bonding layers

for each HWP

Rahlin et al 2014, 1407.2906
Calculating SPIDER’s V-Coupling

Circular Polarization Coupling for the SPIDER HWPs

95 GHz Receivers

Receiver Name: X2
Mean: -0.003
Std: 0.040

Receiver Name: X4
Mean: 0.014
Std: 0.039

150 GHz Receivers

Receiver Name: X1
Mean: -0.088
Std: 0.042

Receiver Name: X3
Mean: -0.154
Std: 0.042

Receiver Name: X6
Mean: -0.039
Std: 0.040

Receiver Name: X5
Mean: -0.096
Std: 0.042

3 independent measurements at each frequency improves V sensitivity
Making V Spectra

Compute cross-spectra for pairs of $s=1$ maps at each frequency

Use Monte Carlo sims to combine with s distributions

No detection of circular polarization

Error in s is highly correlated between bins
SPIDER’s CMB V Limit

Convert spectra to 2σ upper limits and compare to other measurements

VV Limit Comparison (95% C.L.)

- MIPOL Limit: 33 GHz
- SPIDER Limit: 95 GHz
- SPIDER Limit: 150 GHz
SPIDER’s CMB V Limit
Can be extended to a limit on foregrounds and other source spectra

E-modes $\sim 10^0 \mu K^2$
Conclusions

- SPIDER is primarily a linear polarization experiment, but can measure V through HWP non-idealities.

- New upper limit on CMB V V spectrum of 141 to 255 μK² from 33 < ℓ < 307 at 150 GHz.

- No proposed generation mechanisms predict signals at this level, but this is a free sanity check on the universe.

- Other CMB experiments may be able to apply this technique to their data to improve this limit (including SPIDER2).

Nagy et al, 1704.00215
Bonus Slides
Making V Maps

Deglitch and filter the raw data

Split data into 4 independent maps for each receiver
Circularly Polarized Foregrounds

- Galactic foregrounds are the primary concern
- Dominated by synchrotron at the low frequencies of interest
- Can extend SPIDER’s limit to foregrounds, but expected signals are small (though typically larger than expected cosmological signals)

Predicted Foreground Signals

King and Lubin 2016
1606.04112
HWP Non-Idealities

- Arise due to wide band and imperfect AR coating
- See evidence from them in our angle calibration
- Create changes in linear polarization modulation

SPIDER Calibration Data

X6 Detector Angle vs. HWP Angle for one A/B pair

- Detector Angle (degrees)
- HWP Angle (degrees)
HWP Non-Idealities

- Arise due to wide band and imperfect AR coating
- See evidence from them in our angle calibration
- Create changes in linear polarization modulation
HWP Non-Idealities

- Arise due to wide band and imperfect AR coating
- See evidence from them in our angle calibration
- Create changes in linear polarization modulation

SPIDER Calibration Data