High-Energy Neutrinos from Supernovae: New Prospects for the Next Galactic Supernova

arXiv:1705.04750

Kohta Murase (Penn State)

TeVPA 2017 @ Columbus, Ohio

PENNSTATE

Neutrinos: Unique Probe of Cosmic Explosions

~10 MeV neutrinos from supernova thermal: core's grav. binding energy

- supernova explosion mechanism
- progenitor
- neutrino properties, new physics Super-K can detect ~8,000 v at MeV (at 8.5 kpc)

GeV-PeV neutrinos from supernova? non-thermal: shock dissipation

- physics of cosmic-ray acceleration
- progenitor & mass-loss mechanism
- neutrino properties, new physics

IceCube/KM3Net can detect ??? v at TeV

Neutrinos: Unique Probe of Cosmic Explosions

~10 MeV neutrinos from supernova thermal: core's grav. binding energy

- supernova explosion mechanism
- progenitor
- neutrino properties, new physics Super-K can detect ~8,000 v at MeV (at 8.5 kpc)

GeV-PeV neutrinos from supernova? non-thermal: shock dissipation

- physics of cosmic-ray acceleration
- progenitor & mass-loss mechanism
- neutrino properties, new physics

IceCube/KM3Net can detect ~1000 ν at TeV

Early Diffusive Shock Acceleration in Supernovae?

- CR and high-energy neutrino production is initially negligible most of energy is in a kinetic form until the Sedov time uniform ISM: CR energy \propto dissipation energy \propto t³
- But situations are different when circumstellar material (CSM) exists many observational evidences in the recent several years

(Raffaella Margutti's talk)

Evidence of Strong Interactions w. Dense CSM

examples of strong interactions w. dense wind or CSM (IIn, SLSN-II)

Evidence for Dense Material in Ordinary SNe II

Extended material is common even for Type II-P SNe \rightarrow Mdot~10⁻³-10⁻¹ M_{sun} yr⁻¹ (>> 3x10⁻⁶ M_{sun} yr⁻¹ for RSG)

Supernovae with Interactions with CSM

dense environments = efficient v emitters (calorimeters)

Shock Dynamics -> Time-Dependent Model

equation of motion of the shocked ejecta

$$M_{\rm sh} \frac{dV_{\rm s}}{dt} = 4\pi R_s^2 [\rho_{\rm ej} (V_{\rm ej} - V_s)^2 - \rho_{\rm cs} (V_s - V_w)^2]$$

self-similar solution (Chevalier 82)

shock radius
$$R_s = X(w, \delta) D^{-\frac{1}{\delta-w}} \mathcal{E}_{ej}^{\frac{\delta-3}{2(\delta-w)}} M_{ej}^{-\frac{\delta-5}{2(\delta-w)}} t^{\frac{\delta-3}{\delta-w}}$$

CSM parameter $D = \frac{M_w}{4\pi V_w}$ $E_{ej} \sim 10^{51} \text{ erg}, M_{ej} \sim 10 \text{ M}_{sun}$ w=2 for a wind CSM δ ~10-12 for typical progenitors

dissipation luminosity
$$L_d=2\pi \varrho_{
m cs}V_s^3R_s^2\propto t^{rac{6w-15+2\delta-\delta w}{\delta-w}}$$

parameters can be determined by photon (opt, X, radio) observations! $E_d \sim E_{ej}(>V_s)$ in the detailed model, different from $E_d \sim (M_{cs}/M_{ej})E_{ej}$ by KM+11

Diversity of Core-Collapse Supernovae

Neutrino Light Curve

 $t_{onset} \sim time leaving the star (typical)$ or breakout time (IIn) slowly declining light curve while pion production efficiency ~ 1

Neutrino Fluence

Fluence for an integration time at which S/B^{1/2} is maximal (determined by the detailed time-dependent model)

Prospects for Neutrino Detection

through-going muon events

Some Remarks

- Testable & clear predictions (no need for jets, winds, shocks in a star) free parameters: ε_{CR} & s ⇔ shock acceleration theory (ε_{CR}~0.1 & s~2.0-2.3)
- Time window

depends on SN types; guidelines are provided by the theory $(f_{pp} \sim t_{dyn}/t_{pp} \sim 1)$ e.g., characteristic time window: ~1-10 day for SNe II

- Energy range IceCube/KM3Net: TeV-PeV (detectable Glashow res. anti-ν_e & ν_τ events) Hyper-K/PINGU/ORCA: GeV
- Type II cases are different from the Type IIn case
 II-P/II-L/IIb/Ibc: shock in the CSM is collisionless & M_{csm} << M_{ej}
 IIn: shock can be radiation-mediated & M_{csm} could be larger than M_{ej}
 t_{onset} determined by photon breakout, ejecta deceleration,

radiative shock, other relevant CR cooling processes...

(for work on SNe IIn, see KM, Thompson, Lacki & Beacom 11 and Petropoulou's talk)

Implications

- Astrophysical implications
 - a. pre-explosion mass-loss mechanisms how does a dense wind/shell form around the star ?
 - b. PeVatrons
 - can CRs be accelerated up to the knee energy at 10^{15.5} eV?
 - c. real-time observation of ion acceleration for the first time is it consistent with the diffusive shock acceleration?
 - d. promising targets of multi-messenger astrophysics
 MeV vs & possibly gravitational waves
 optical, X-rays, radio waves, and gamma rays (up to ~Mpc by Fermi)
- Particle physics implications neutrino flavors (matter effect is not relevant), neutrino decay, neutrino self-interactions, oscillation into other sterile states etc.

cf. more lucky examples? Betelgeuse: ~10³-3x10⁶ events Eta Carinae: ~10⁵-3x10⁶ events

Take Away

- We provided the time-dependent model for high-energy neutrino/gamma-ray emission from different classes of SNe
- Type II: ~1000 events of TeV v from the next Galactic SNe
- SNe as "multi-messenger" & "multi-energy" neutrino source

CRs Should Lead to Efficient Hadronic Interactions

particle collisions with CSM $p + p \rightarrow N\pi + X$ $\mathbf{t}_{pp} = 1/(\mathbf{n} \kappa_{pp} \sigma_{pp} \mathbf{c})$ $\mathbf{t}_{dyn} = \mathbf{R}/\beta \mathbf{c} \rightarrow \mathbf{f}_{pp} = (\mathbf{R}/\beta) \mathbf{n} \kappa_{pp} \sigma_{pp}$

= $R/\beta C$ pp pp pp ($\sigma_{pp} \sim 3x10^{-26} \text{ cm}^2$)

 $\begin{aligned} \mathbf{f}_{pp}(\mathbf{r}_{bo}) &\sim \beta^{-2}(\kappa_{pp}\sigma_{pp}/\sigma_{T}) \sim 0.03 \ \beta^{-2} & \text{at breakout: } \tau_{T} = 1/\beta \\ \beta &\sim 0.1 - 1 & \Leftrightarrow \text{ transrelativistic SNe} \\ \beta &\sim 0.01 - 0.03 \Leftrightarrow \text{ nonrelativistic SNe} \\ & \text{most CR energy goes to pions} \end{aligned}$

$$\pi^{0} \rightarrow \gamma + \gamma$$

$$\pi^{\pm} \rightarrow \nu_{\mu} + \overline{\nu}_{\mu} + \nu_{e}(\overline{\nu}_{e}) + e^{\pm}$$
new probes!

Transrelativistic SNe (β~1)

Nearby GRBs (ex. 060218@140Mpc, 980425@40Mpc) may form another class

- much dimmer ($E_{LL\gamma}^{iso} \sim 10^{50} \text{ erg} \Leftrightarrow E_{GRB\gamma}^{iso} \sim 10^{53} \text{ erg/s}$)
- more frequent ($\rho_{LL} \sim 10^{2-3} \text{ Gpc}^{-3} \text{ yr}^{-1} \Leftrightarrow \rho_{GRB} \sim 0.05-1 \text{ Gpc}^{-3} \text{ yr}^{-1}$)
- relativistic ejecta (the other GRB-SNe + 2009bb) (Soderberg+ 10 Nature)
- maybe more baryon-rich? (e.g., Zhang & Yan 11 ApJ)

Neutrinos from Transrelativistic SNe

Kashiyama, KM+ 13 ApJL

Gamma Rays from Transrelativistic SNe

Kashiyama, KM+ 13 ApJL

- Detectable by CTA up to ~100 Mpc
- Detection \rightarrow SN-GRB connection, physics of breakout and CRs

Shock Breakout Emission from Dense CSM

photon diffusion time $t_{diff} \sim R^2/\kappa_{rad} \sim n\sigma_T R^2/c$

shock breakout: $t_{rise} = t_{diff} = t_{dyn} \Leftrightarrow \tau_T = 1/\beta = c/V$

CSM mass: $M_{cs} \sim (4\pi R^2/3\sigma_T)m_P\tau_T$ Dissipation energy: $E_{rad} \sim (1/2)M_{cs}V^2$

ex. SN 2009ip t_{rise} =10 d, R=0.5x10¹⁵ cm $\rightarrow M_{cs}$ ~0.05 M_{sun} consistent $\rightarrow E_{rad}$ ~2x10⁴⁹ erg w. obs.!

Neutrinos from Type IIn SNe

• If CRs carry ~10% of $E_{ej} \rightarrow \#$ of μs ~a few for SN@10Mpc

Stacking analyses for nearby SNe (~O(100) needed)

Gamma Rays from Type IIn SNe

KM, Thompson, Lacki & Beacom 11 PRD

- GeV γ rays can be seen by Fermi up to ~30 Mpc
- TeV γ rays are detectable by CTA up to ~30-100 Mpc