Difficulties of Star-forming Galaxies as the Source of **IceCube Neutrinos** Takahiro Sudoh (UTokyo) Tomonori Totani (UTokyo) Norita Kawanaka (Kyoto University)

IceCube Neutrino

Astrophysical TeV - PeV neutrinos

- Isotropic arrival direction ... extragalactic origin?
- No identified individual source
- Various source models
 - Cosmic-ray sources (GRB, AGN)
 - Cosmic-ray reservoirs (star-forming galaxy, cluster)
- Star-forming galaxies among possible sources
 - high density & strong magnetic field
 - --> efficient production of high-energy neutrinos?

Neutrino from Galaxies

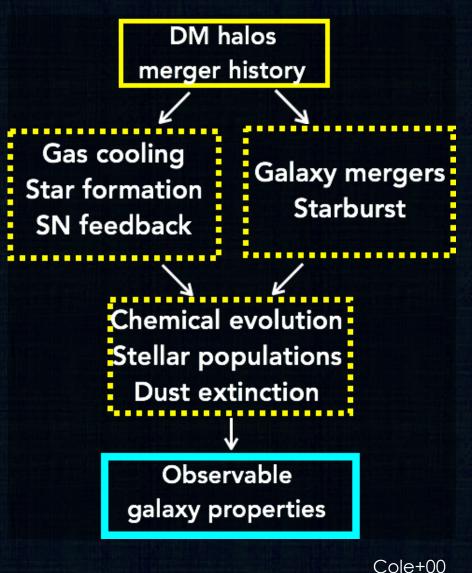
Previous studies

Simple estimate by using IR luminosity (e.g. Tamborra+14, Chang+15) or EGB observation (e.g. Bechtol+17)

- > Bechtol+17 : SBGs should not produce more than 30 % of IceCube data at 100 TeV (for $\Gamma=2.2$)
 - > Sensitive to gamma-ray spectral index Γ (parameter)

It may still be possible that SBGs make larger contribution (e.g. Xiao+16, Chakraborty & Izaguirre 16)

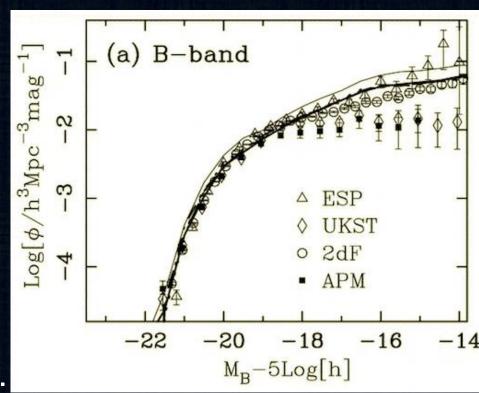
Xiao+16 : SBGs may contribute ~50 % of the > 100 TeV flux


This Work

- New calculation of contribution of galaxies to diffuse gamma-ray/neutrino backgrounds with a cosmological galaxy formation model
- Realistic estimation based on physical quantities of individual galaxies at various redshifts
- Robust calibration using gamma-ray luminosities of nearby galaxies

Semi-Analytical Model of Galaxy Formation

- Analytical calculation of dark halo merger trees (based on Press-Schechter)
- phenomological treatment of baryonic processes in DM haloes
- Calculate properties of galaxies a various out put redshifts
 - SFR, size, mass, morphology,
 SF mode (quiescent/burst), etc.
 Reproduce many observations


We use the "Mitaka model" (Nagashima & Yoshii 2004)

Semi-Analytical Model of Galaxy Formation

- Analytical calculation of dark halo merger trees (based on Press-Schechter)
- phenomological treatment of baryonic processes in DM haloes
 - Calculate properties of galaxies a various out put redshifts
 - SFR, size, mass, morphology,
 SF mode (quiescent/burst), etc.
 - Reproduce many observations

We use the "Mitaka model" (Nagashima & Yoshii 2004)

(Nagashima and Yoshii 2004)

Modelling Neutrinos from Galaxies

Neutrinos from a galaxy

$$\frac{dN_{\nu_i}}{dtdE_{\nu}}(E_{\nu}) = \int_{E_{\nu}}^{\infty} \frac{f_{\pi}(E_p)}{dtdE_p} \frac{dN_p}{dtdE_p}(E_p)F_{\nu_i}(\frac{E_{\nu}}{E_p}, E_p)\frac{dE_p}{E_p}$$
Pion production efficiency Neutrino spectrum of injection from a pp interaction

from a pp interaction (Kelner+06)

$$\frac{dN_p}{dtdE_p}(E_p) = C(\frac{\text{SFR}}{M_{\odot}\text{yr}^{-1}})(\frac{E_p}{\text{GeV}})^{-\Gamma_{\text{in}}}$$

► C : determined from L_Y of nearby galaxies ► $f_{\pi} = 1 - \exp(-t_{\rm esc}/t_{\rm pp})$: calculated from properties of each galaxy (see next slide) $\begin{array}{l} \textbf{Calculation of Pion Production Efficiency}}\\ \textbf{F} \ t_{\rm pp} = (n_{\rm gas} \sigma_{\rm pp}^{\rm inel.} c)^{-1}\\ \textbf{F} \ t_{\rm esc} : \ \text{Advection timescale} = H/V_c \ (V_c: \ \text{dark halo circular velocity})\\ \text{Diffusion timescale} = H^2/D \ (D: \ \text{diffusion coefficient})\\ t_{\rm esc} = \min[t_{\rm adv}, t_{\rm diff}] \ \text{and } \underline{\text{lower limit}} \ \text{is set to} \ H/c \end{array}$

> H (gas scale height) : $H=R_{
m eff}$ for elliptical and $H\propto R_{
m eff}$ for disk

Diffusion coefficient D(E) depends on B, l₀, δ
B (magnetic field) : assuming €CR = €B in each galaxy
l₀ (outer scale of turbulence) : equal to scale height (l₀ = H)
δ (turbulence spectrum) : Kolmogorov-type (δ = 1/3)

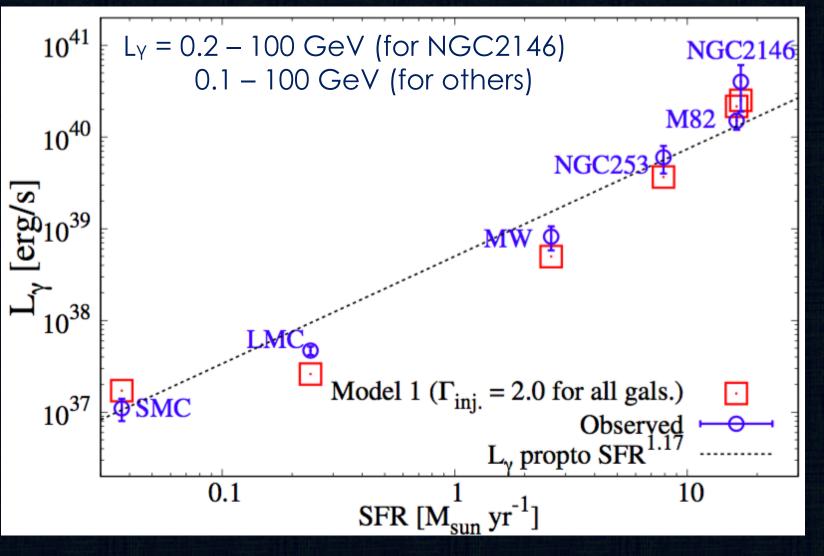
 $ightarrow t_{
m esc}/t_{
m pp}$ from $M_{
m gas},~V_c,~R_{
m eff}$ and morphology of each galaxy

 $\begin{array}{l} \textbf{Calculation of Pion Production Efficiency}}\\ \textbf{F} \ t_{\rm pp} = (n_{\rm gas} \sigma_{\rm pp}^{\rm inel.} c)^{-1}\\ \textbf{F} \ t_{\rm esc} : \ \text{Advection timescale} = H/V_c \ (V_c: \ \text{dark halo circular velocity})\\ \text{Diffusion timescale} = H^2/D \ (D: \ \text{diffusion coefficient})\\ t_{\rm esc} = \min[t_{\rm adv}, t_{\rm diff}] \ \text{and } \underline{\text{lower limit}} \ \text{is set to} \ H/c \end{array}$

> H (gas scale height) : $H=R_{
m eff}$ for elliptical and $H\propto R_{
m eff}$ for disk

- > Diffusion coefficient D(E) depends on B, l_0, δ > B (magnetic field) : assuming $\epsilon_{CR} = \epsilon_B$ in each galaxy
 - > l_0 (outer scale of turbulence) : equal to scale height ($l_0 = H$)
 - > δ (turbulence spectrum) : Kolmogorov-type ($\delta=1/3$)

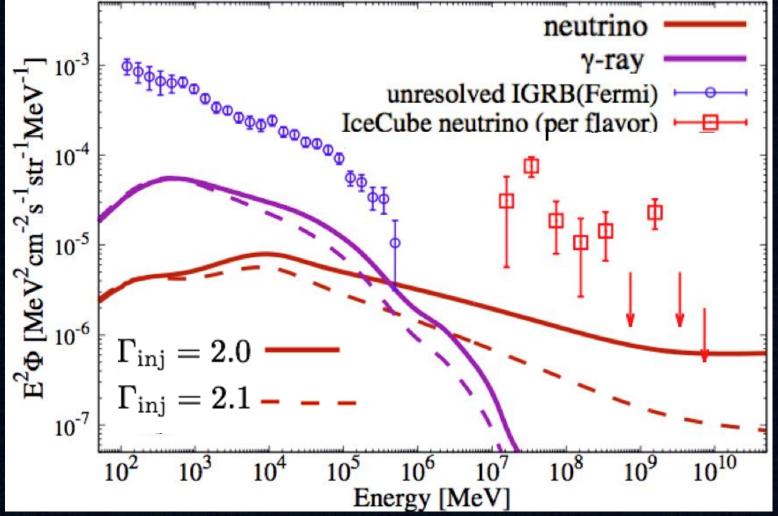
 $\rightarrow t_{\rm esc}/t_{\rm pp}$ from $M_{\rm gas}, V_c, R_{\rm eff}$ and morphology of each galaxy Directly derived from galaxy formation model


Model Calibration $\frac{dN_p}{dtdE_p}(E_p) = C(\frac{\text{SFR}}{M_{\odot}\text{vr}^{-1}})(\frac{E_p}{\text{GeV}})^{-\Gamma_{\text{inj}}}$

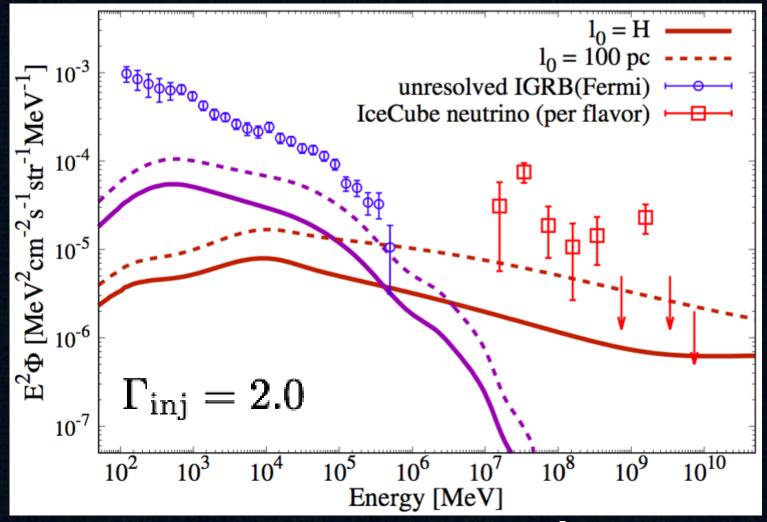
Objects	$L_{oldsymbol{\gamma}}$	\mathbf{SFR}	$M_{ m gas}$	$R_{ m eff}$	V_c
	$10^{39} \mathrm{~erg/s}$	$M_{\odot}/{ m yr}$	$10^9~M_{\odot}$	kpc	$\rm km/s$
MW	$0.82{\pm}0.24$	2.6	4.9	6.0	200
LMC	$0.047{\pm}0.005$	0.24	0.53	2.2	120
\mathbf{SMC}	$0.011 {\pm} 0.003$	0.037	0.45	0.7	<mark>6</mark> 0
NGC253	$6{\pm}2$	7.9	4.3	3.7	190
M82	$15{\pm}3$	16.3	1.3	1.2	136
NGC2146	$40{\pm}21$	13.8	4.0	1.8	220

M31, Arp220, NGC4945, NGC1068 not used in this work

 Calculate L_γ^{model} for nearby galaxies from SFR, M_{gas}, V_c, R_{eff}
 Minimize χ²(C) = Σ_{i=1}<sup>N_{gal} (L_{γ,i}^{obs} - L_{γ,i}^{model}(C))² _{i=1} to fix C
</sup>


Model Calibration

 $\succ \Gamma_{inj}$ is set to 2 in all galaxies


Model agrees very well with observation !

Result (Gamma-ray & Neutrino)

Star-forming galaxies make ~10 % contribution to IGRB
 and less than 10 % contribution to IceCube data
 even when Γ_{inj} = 2 in all galaxies (optimistic)

Result (Dependence on Modelling)

 \succ We check dependence on modelling of H and $~l_0$

> E.g.) If we set $l_0 = 100 \text{ pc}$ in all galaxies, the result changes by a factor of ~2 but still cannot explain data.

Summary

Calculated γ-ray and neutrino fluxes
 with a cosmological galaxy formation model

> Calibrated models from L_{γ} of nearby six galaxies

> SFG can explain less than 10 % of IceCube data
 → other source(s) should be dominant

Appendix

derived values for nearby galaxies in our model

	H	B	$D~(\mathrm{E{=}10~GeV})$	$n_{ m gas}$	$t_{\rm esc}~({\rm E{=}10~GeV})$	t_{pp}	f_{π} (E=10 GeV)
	[pc]	$[\mu G]$	$[\mathrm{cm}^2~\mathrm{s}^{-1}]$	$[\mathrm{cm}^{-3}]$	[yr]	[yr]	
MW	150	4.1	$8.9 imes 10^{28}$	11.5	8.0×10^4	$3.1 imes 10^6$	$2.6 imes 10^{-2}$
SMC	17	1.7	$2.8 imes 10^{28}$	670	3.4 $ imes$ 10 3	5.4×10^4	$6.2 imes 10^{-2}$
LMC	50	2.4	$5.1 imes 10^{28}$	34	$1.6 imes \ 10^4$	1.1×10^6	1.4×10^{-2}
NGC253	93	8.2	$5.2 imes 10^{28}$	43	$5.2 imes 10^4$	$8.2 imes 10^5$	$6.2 imes 10^{-2}$
M82	28	19	1.7×10^{28}	500	$1.4 imes 10^4$	7.2×10^4	0.18
NGC2146	45	16	$2.6 imes~10^{28}$	350	$2.4 imes 10^4$	1.0×10^5	0.21

> Input: SFR, $M_{\rm gas}, V_c, R_{\rm eff}$

Appendix \blacktriangleright Cosmic ray energy density $\epsilon_{\rm CR} = \frac{\dot{E}_{\rm CR} \tau_{\rm esc}}{V}$

\$\mathcal{\tau}_{esc}\$: Estimated for E = GeV
 \$\text{The result is not changed when}\$
 we use E = 100 MeV or 10 GeV instead.