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Motivation - Individual Source Physics

• Complexity of physical processes 
and environment lead to 
degeneracies (AGNs, GRBs, etc)

• Standard SED modeling, 
morphology,  “eyeballing” lightcurves 
insufficient - extract more from MWL 
LCs ?

• Need newer and novel 
“observables” for sharper 
understanding -> PSD, PDF, 
Polarisation

• Large datasets <=> Statistical 
Methods (both individual and 
population) e.g. time series methods

• Better statistics per obs, more 
sources
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 EGB : E>50 GeV  
M. Ackermann et al.2016  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• Distribution of timescales” (or PSD) 
encodes temporal structure  

• Time : x = s + n (Vaughan Lecture) 
Fourier : X = S + N  
|X|2 = |S|2 + |N|2 + Cross 
PSD(f) =  |S|2 =  |X|2 -  |N|2 

• Formally (for AGNs and others)  
Time : Lightcurve(t) = Dynamical(t) x 
Acceleration(t) x Radiation(t) x 
Observation(t)  [Product]

• First 2 moments - mean and variance4

Vaughan Lecture

• Distribution of fluxes (or PDF) 
probes the fundamental form of the 
physical processes 

• Default assumption is Gaussian ; 
evidence for lognormality => 
Multiplicative (Lyubarskii 97, Uttley et a., 2005) 
or Cascade like processes (exception 
see Biteau and Giebels, 2012)

• Contains the skewness and kurtosis 
of the underlying data

PKS 2155-304 TeV 
Observations 
(H.E.S.S., 2006)

Additional (statistical) Observables : PSD and PDF
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PDF : Observational precedence

5

Mrk 421 : Sinha et al., 2016

PKS 2155-304 TeV 
Observations 
(H.E.S.S., 2006)



PDF : Observational precedence
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Mrk 421 : Sinha et al., 2016

PKS 2155-304 TeV 
Observations 
(H.E.S.S., 2006)

CATALINA Fermi OVRO

CATALINA Fermi
             

OVRO

CATALINA Fermi
             

OVRO

CATALINA Fermi

3C 279

Mrk 421

Mrk 501

PKS 1222+216 Morris, Chakraborty, Cotter, In Prep



Origin of Lognormality ?
• Multiplicative process <=> 

Lognormality

• Lyubarskii’s accretion disk 
=> Fluctuations propagating 
from outer to inner rings 
=> Multiplicative

• Analogous picture for jets

6

Potter & Cotter, 

Lyubarskii, 1997 (flicker noise in accretion)

Chakraborty, Morris, Cotter, In Prep

Nagel et al.,2004
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Variability Energy Distribution 
• Both the uncertainty and bias due to 

observational effects are non-trivial

• Simple yet not unbiased estimator

• Correct estimate of variability 
necessitates incorporating observational 
cadence (uneven and sparse 
sampling ) errors and biases

• Errors on flux bins less important  
than errors due to non-accounting of 
gaps and sampling limits

• Account with simulations as shown

• Then model VED along with SED

7

• Several applications with simulated LCs  
- Other estimators like CCF, doubling times, etc. (previous talks, Vaughan, Emmanuoulopoulos et 13) 
- Polarisation variability (Blinov - RoboPol first season results) 
- Estimation of flaring in AGNs  
etc….. 

gaps

window

sampling



Variability Energy Distribution 
• Both the uncertainty and bias due to 

observational effects are non-trivial

• Simple yet not unbiased estimator

• Correct estimate of variability 
necessitates incorporating observational 
cadence (uneven and sparse 
sampling ) errors and biases

• Errors on flux bins less important  
than errors due to non-accounting of 
gaps and sampling limits

• Account with simulations as shown

• Then model VED along with SED

7

• Several applications with simulated LCs  
- Other estimators like CCF, doubling times, etc. (previous talks, Vaughan, Emmanuoulopoulos et 13) 
- Polarisation variability (Blinov - RoboPol first season results) 
- Estimation of flaring in AGNs  
etc….. 



8

Fermi -LAT Collaboration

Variable Population : Source Flux / Counts Distribution
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Fermi -LAT Collaboration

The very brightest count

For flaring timescales of a week 
=> Handful to atleast 2 x Handful 

Chakraborty, Pavlidou and Fields, 2014 

Variable Population : Source Flux / Counts Distribution

Flaring
Quiescent

D. Feldman and Pavlidou, CPF 2014 



Conclusions
• Complexity of processes and environment of individual 

sources like AGNs necessitates “novel observables”

• Also relevant for population studies and diffuse 
backgrounds

• Model degeneracies can be lifted in both cases

• Better instruments => Better data / statistics => 
Statistical observables (PSD, PDF)

• Improve theoretical understanding of observables in 
terms of physical processes
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Thank you !!!
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PSD : Simulations  
General Approach

• Observed Emission  
- Function of time (lightcurve), space (morphology), energy (energy spectrum) How tells us why  
- Individual sources : physical mechanisms at emission sites 
- Population : general trends 

• Timing analysis : Observed light curve is 1 sample or realisation -> we need to “repeat” to get significant results 
(Timmer and Koenig, 1995, Emmanoulopoulos, McHardy and Papadakis, 2013)

• Signal coupled with noise  
- Either disentangle deterministic signal from random fluctuations (for eg. detecting periodic/QPOs) 
- Or the interesting signals are random fluctuations themselves (for eg. flaring vs quiescence)

• Observational Irregularities : Allocation, satellite cycles, visibility, competing targets, etc 
- gaps  
- coarse or uneven sampling  
- length of observation limited

Emmanoulopoulos et al., 2013, Allevato et al., 
2013, Chakraborty & Biteau (In prep)
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function of the “fundamental 
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Particle Acceleration -> Power-Laws

13

=>

• Lightcurve(f) = Dynamical(f) * Acceleration(f) * Radiation(f) * Observation(f)

Could they have same origin ?
(Analytical / simulations with Simone Giacche)



Physics of individual sources  
- AGN jets

Chen, Botcher, Pohl
Potter & Cotter, 2012…

Marscher

14
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Start with “fundamental 
observables” : PSD (PL) and 

PDF (Lognormal)

Generate realisations / 
surrogate data (for  e.g. 

lightcurves TK95,DE13, etc)

Impose observational 
conditions (cadence, cuts, 

uncertainties, etc)

Evaluate estimators (Fvar, 
CCF, Spectral shape, etc.) for 

each realisation

Likelihood Analysis as 
function of the “fundamental 

parameters”



Variability Energy Distribution 
• Even with red noise, both the 

uncertainty and bias due to 
observational effects are non-
trivial

• Correct estimate of variability 
necessitates incorporating these 
systematic uncertainties

• Crucial to have coordinated 
observational cadence across 
wavelengths

• Further work - non-Gaussian 
PDFs, tests for stationarity

16

• Several applications with simulated LCs  
- Other estimators like CCF, doubling times, etc. (previous talks, Vaughan, Emmanuoulopoulos et 13) 
- Polarisation variability (Blinov - RoboPol first season results) 
- Estimation of flaring in AGNs  
etc….. 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Fvar reconstruction 
Observed Cadence“Ideal” Cadence

Red Noise : Index = 2.0
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Fvar reconstruction 
Observed Cadence“Ideal” Cadence

Pink Noise : Index = 1.0



Fvar reconstruction 

• Bias due to observational effects - larger for harder PSD (brown vs red) -> sampling effects ?

• Relatively, best reconstructions for finely sampled, least “gapped” (OVRO, Vband)

• Length of observational window less important for long enough durations and slow variations 
19

simulation PSD index = 2.0simulation PSD index = 1.0

∆ Fvar

Fvar,obs



• Uncertainty in Fvar comparable for brown vs red noise 

• Relative uncertainty larger for longer wavelengths - larger dispersion (𝛔 
does not include flux errors)

20

Fvar reconstruction…. 
simulation PSD index = 2.0simulation PSD index = 1.0

𝛔Fvar

Fvar,obs



Backup

21

Vaughan et al.,2003



Simple Resampling Effects
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Non-gaussian PDF
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Power Spectral Density 
• Power spectral density or PSD is the 

“distribution of timescales”

• Frequency <-> timescales

• Time : x = s + n  
Fourier : X = S + N  
|X|2 = |S|2 + |N|2 + Cross 
PSD(f) =  |S|2 =  |X|2 -  |N|2  

<=> Related to the variance

24

• Formally (for AGNs and others)  
Time : Lightcurve(t) = Dynamical(t) x 
Acceleration(t) x Radiation(t) x 
Observation(t)  [Product]

• Fourier : Lightcurve(f) = Dynamical(f) * 
Acceleration(f) * Radiation(f) * 
Observation(f) [Convolution]

• Dynamical -> Periodic, slow variations 
Acceleration -> Stochastic / Shocks 
(Sironi et al., 2015, Giacche and Chakraborty, in 
progress) 
Radiation-> (LC simulations <-> 
“Observables”) 
Observation-> Potential (CTCs, 
others)

Vaughan Lecture



Types of lightcurves

• Periodic - differentiate 
deterministic from noisy 
background

• Transient - differentiate 
deterministic from noisy 
background

• Stochastic - noisy signal  
(from noisy background ?!) 
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P ~17 d

GRB  111211A - AGILE

PKS 2155-304 : 2006 TeV Flare
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Types of data analyses
• Depending on the 

wavelength  
- (quasi-)continuous, 
binned signals or fluxes 
- discrete : time tagged 
events 
- discrete : counts per time 
bins

• Naturally analyses 
methods are also 
different(ly used)

• Temporal vs Fourier 
Analyses ; mixed

26
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CPF2014
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