The Axion Resonant InterAction Detection Experiment (ARIADNE)

A. Arvanitaki and AG., Phys. Rev. Lett. 113,161801 (2014).

Andrew Geraci (UNR)

Mark Cunningham (UNR)

Mindy Harkness (UNR)

Jordan Dargert (UNR)

Chloe Lohmeyer (UNR)

Asimina Arvanitaki (Perimeter)

Aharon Kapitulnik (Stanford)

Eli Levenson-Falk (Stanford)

Sam Mumford (Stanford)

Josh Long (IU)

Chen-Yu Liu (IU)

Mike Snow (IU)

Erick Smith (IU)

Justin Shortino (IU)

Mykhaylo Severinov (IU)

Asiyah Din (IU)

Mofan Zhang (IU)

Inbum Lee(IU)

Yannis Semertzidis (CAPP)

Yun Shin (CAPP)

Yong-Ho Lee (KRISS)

Spin-dependent forces

Monopole-Dipole axion exchange

$$U(r) = \frac{\hbar^2 g_s^N g_p^N}{8\pi m_f} \left(\frac{1}{r\lambda_a} + \frac{1}{r^2} \right) e^{-r/\lambda_a} (\hat{\sigma} \cdot \hat{r}) \equiv \mu \cdot B_{\text{eff}}$$

Acts as effective magnetic field

- Different than ordinary B field
- Does not couple to angular momentum
- Unaffected by magnetic shielding

A spin polarized sample acts as an indicator of the Axion potential

- A steep drop-off allows the effective field to be effectively turned on and off
- Repeated insertion and removal of this mass at the Larmor frequency allows resonant amplification of the effect
- Look for changes in the NMR frequency induced by $B_{\it eff}$

Current experimental limits

[1] Phys. Rev. Lett. 111, 102001 (2013), [2] Phys. Rev. Lett. 111, 100801 (2013), [3] Phys. Rev. D 87, 011105(R) (2013), [4] Phys. Rev. Lett. 105, 170401 (2010), [5] Phys. Rev. Lett. 77, 2170 (1996)

Concept for ARIADNE

Unpolarized (tungsten) segmented cylinder sources B_{eff}

Superconducting shielding (Stanford)

$$U(r) = \frac{\hbar^2 g_s^N g_p^N}{8\pi m_f} \left(\frac{1}{r\lambda_a} + \frac{1}{r^2} \right) e^{-r/\lambda_a} (\hat{\sigma} \cdot \hat{r}) \equiv \mu \cdot B_{\text{eff}}$$

A. Arvanitaki and A. Geraci, *Phys. Rev. Lett.* 113, 161801 (2014).

Polarized ³He compression system

- Modification and rebuilding of existing MEOP system
- New fiber laser and optical polarimeter
- Delivers compressed polarized ³He at room temperature

Rev. Sci. Instrum. 76, 053503 (2005)

Test cryostat

- Magnetic field coils
- Produce polarized
 ³He at 4K
- Tests of NMR system
- Measurement of polarized ³He relaxation time

Rotary stage vibration and tilt

Rotary test chamber

- Build an interferometer to measure the change in distance (d).
- We can find theta (Θ) from:
 Θ= cos⁻¹((L-d)/L)
- We can solve for the wobble distance (X) by:

$$X = Lsin(\Theta)$$

Sputtered Niobium on Quartz

- DC sputtering system
- 300W deposition
- 300V, 1A
- 12.5nm/min rate

Gun – 3" Nb target, .25" thick

Water cooled Rotation stage

Sample shutter

Sensitivity

A. Arvanitaki and AG., Phys. Rev. Lett. 113,161801 (2014).

Summary

- New resonant method to search for monopoledipole interaction
- Sensitive to Axions in the 0.1meV <m_a < 10 meV range
- Hardware is being developed and tested for the experiment

Conceptual drawing of apparatus

- Experiment is done at 4K
 - Allows for superconducting shielding
 - Reduces thermal noise
- Ellipsoidal sample allows near uniform magnetization
- Rotating segmented mass oscillates force in resonance to the Larmor precession
- SQUID pickup loop for NMR of sample
- Radiation and superconducting magnetic shielding used to minimize noise

Experimental challenges

Systematic Effect/Noise source	Background Level	Notes
Magnetic gradients	$3 \times 10^{-6} \text{ T/m}$	Limits T_2 to ~ 100 s
		Possible to improve w/shield geometry
Vibration of mass	10^{-22} T	For 10 μm mass webble at ω_{rot}
External vibrations	$5 \times 10^{-20} \text{ T/}\sqrt{\text{Hz}}$	For 1 μ m sample vibration (100 Hz)
Patch Effect	$10^{-21} (\frac{V_{\text{patch}}}{0.1 \text{V}})^2 \text{ T}$	Can reduce with V applied to Cu foil
Flux noise in squid loop	$2 \times 10^{-20} \text{ T/}\sqrt{\text{Hz}}$	Assuming $1\mu\Phi_0/\sqrt{\rm Hz}$
Trapped flux noise in shield	$7 \times 10^{-20} \frac{\mathrm{T}}{\sqrt{\mathrm{Hz}}}$	Assuming 10 cm^{-2} flux density
Johnson noise	$10^{-20} (\frac{10^8}{f}) T / \sqrt{Hz}$	f is SC shield factor (100 Hz)
Barnett Effect	$10^{-22} (\frac{10^8}{f}) \text{ T}$	Can be used for calibration above 10 K
Magnetic Impurities in Mass 10	$0^{-25} - 10^{-17} \left(\frac{\eta}{1 \text{ppm}}\right) \left(\frac{10^8}{f}\right) \text{ T}$ $10^{-22} \left(\frac{10^8}{f}\right) \text{ T}$	η is impurity fraction (see text)
Mass Magnetic Susceptibility	$10^{-22} (\frac{10^8}{f}) \text{ T}$	Assuming background field is 10^{-10} T
	,	Background field can be larger if $f > 10^8$

Table 1: Table of estimated systematic error and noise sources, as discussed in the text. The projected sensitivity of the device is $3 \times 10^{-19} (\frac{1000s}{T_2}) \text{ T}/\sqrt{\text{Hz}}$

- Design/Simulation Work: Magnetic gradient reduction strategy
- Experimental testing in progress: Vibration tests, Shielding factor f test thin-film SC