Emission of Photons and Relativistic Axions from Axion Stars

TeVPA 2017, Columbus Aug 10, 2017

Abhishek Mohapatra

The Ohio State University

In collaboration with Eric Braaten and Hong Zhang

Outline

- > Axions
- ➢ Axion EFT
 PRD 94, 076004 (2016)
- Dense Axion Star
 PRL 117, 121801 (2016)
- Emission from Axion Stars arXiv:1609.05182
- Axion stars and Fast radio burst
- > Summary

Axions

- A strongly motivated candidate for dark matter from particle physics perspective.
- Pseudo-Goldstone boson associated with the U(1) PQ symmetry that solves the strong CP problem of QCD. Pecci & Quinn (1977)
- Produced in early universe by non-thermal mechanisms:

vacuum misalignment

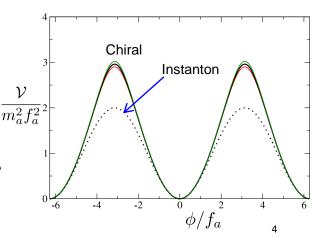
highly nonrelativistic, huge occupation numbers, coherent.

Preskill, Wise & Wilczek (1983) Abbott & Sikivie, 1983 , Dine & Fischler (1983) cosmic string decay

highly nonrelativistic, huge occupation numbers, incoherent.

Davis (1986)

- Spatial fluctuations in axion field leads to evolution of axions into gravitationally bound "miniclusters" of axions. Hogan & Rees (1988), Kolb & Tkachev (1993)
- Gravitational interactions can thermalize the axions to form
 Bose-Einstein condensate sikivie & Yang (2009), Erken, Sikivie, Tam and Yang (2012).


Axions

• Relativistic field theory: Axions are described by a real scalar field ϕ and a potential $\mathcal{V}(\phi)$

Instanton Potential

 $z = m_u/m_d \approx 0.48 \pm 0.03$ Vecchia & Veneziano (1980)

- Astrophysical and cosmological constraints restricts f_a: 10⁸ 10¹³ GeV.
- Mass of the axion : 10⁻⁶ 10⁻² eV.
- Spin-0 particle with very small mass and extremely weak selfinteractions.

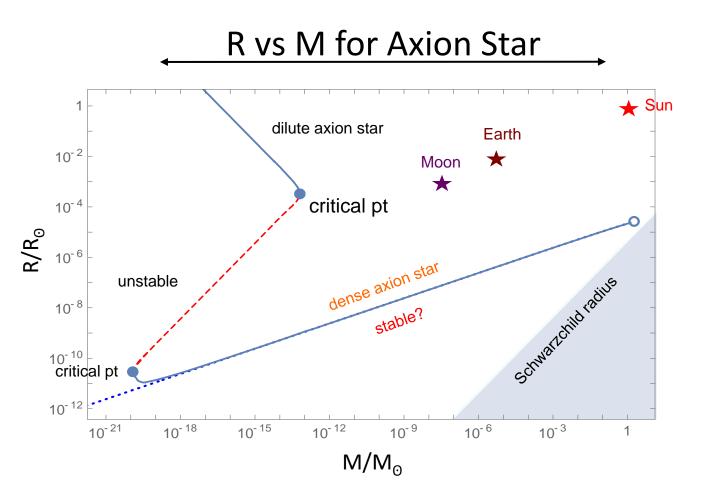
 m_a : axion mass

Axion EFT

- Axions produced from non-thermal mechanism have energy much less than
 m_a. Non Relativistic (NR) Axions
- NR axions: described by nonrelativistic effective field theory (axion EFT) with complex scalar field ψ.

$$\mathcal{H}_{\mathrm{eff}} = rac{1}{2m_a} \nabla \psi^* . \nabla \psi + \mathcal{V}_{\mathrm{eff}} \left(\psi^* \psi \right).$$

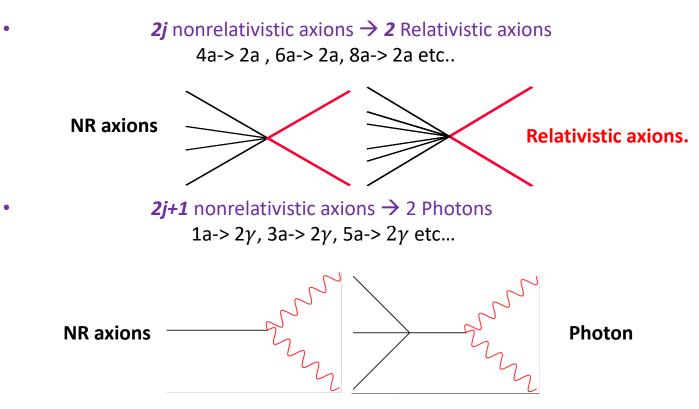
- Effective potential : obtained by matching low energy scattering amplitudes at tree level in relativistic theory and axion EFT. Braaten, AM, Zhang, PRD (2016)
- Naïve effective potential: $\phi(\mathbf{r},t) = \frac{1}{\sqrt{2m_a}} \left[\psi(\mathbf{r},t)e^{-im_a t} + \psi^*(\mathbf{r},t)e^{+im_a t} \right]$


 $\hat{\psi} = \left(2\psi^*\psi/m_a f_a^2\right)$

$$\mathcal{V}_{\text{eff}}\left(\psi^{*}\psi\right) = \frac{1}{2}m_{a}\psi^{*}\psi + m_{a}^{2}f_{a}^{2}\left[1 - J_{0}\left(\hat{\psi}\right)\right]$$

Eby, Suranyi, Vaz, Wijewardhana (2015)

Stable configuration of axions bound by gravity is called an *axion star*.
 Tkachev (1991)


Dilute Axion Star Barranco & Bernal (2011)	Dense Axion Star PRL (2016)
• characterized by $\psi^*\psi < 10^{-15}m_a f_a^2$ • In stable star, repulsive force from kinetic energy = attractive force from gravity + attractive force from axion pair interactions • Critical mass beyond which the axion star will collapse. $6 \times 10^{-14} M_{\odot}$ for $m = 10^{-4}$ eV.	 characterized by ψ[*]ψ ~ 20 m_af_a² at center for mass 10⁻¹⁴ M_☉. In stable star, repulsive force from BEC self interaction attractive force from gravity in most of the bulk except near the surface.
Chavanis & Delfini (2011)	

Braaten, AM, Zhang, PRL (2016)

Emission From Axion Stars

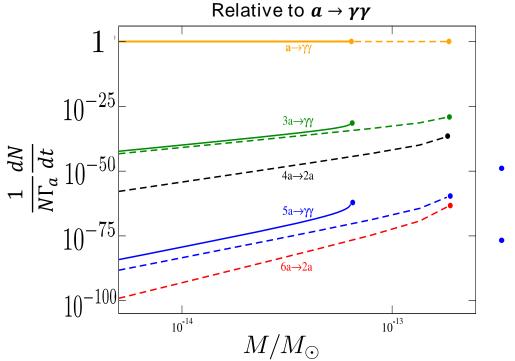
 Inelastic reactions can change the number of nonrelativistic axions in axion stars.

Emission From Axion Stars

Inelastic reactions that decrease axion number can be included within the axion EFT through imaginary part of the effective potential V_{eff}.

Contributions to loss rate of non-relativistic axions:

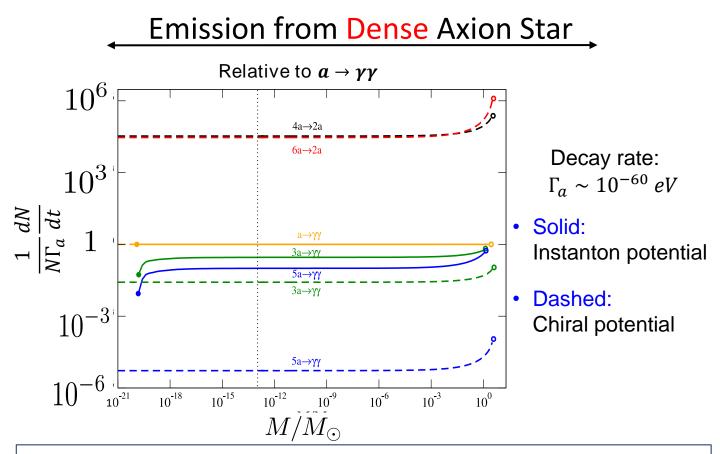
a. Loss due to
$$a \rightarrow \gamma \gamma$$
:
$$-\frac{1}{N} \frac{dN}{dt} \propto \Gamma_a$$


b. Loss due to $(2j + 1)a \rightarrow \gamma\gamma$:

$$-\frac{1}{N}\frac{dN}{dt} \propto \Gamma_a \frac{\langle n^{2j} \rangle}{(m_a f_a^2)^{2j}}$$
 Density dependence !!

c. Loss due to relativistic axions $(2j a \rightarrow aa)$:

$$-\frac{1}{N}\frac{dN}{dt} \propto \frac{m_a^3}{f_a^2}\frac{\langle n^{2j-1} \rangle}{(m_a f_a^2)^{2j-1}}$$
ecay rate of axion to 2 photons: $\Gamma_a \sim \frac{\alpha^2 m_a^3}{f_a^2} \sim 10^{-60} \ eV.$


Emission from Dilute Axion Star

Decay rate: $\Gamma_a \sim 10^{-60} \ eV$

- Solid: Instanton potential
- Dashed: Chiral potential

Other reactions are highly suppressed compared to $a \rightarrow \gamma \gamma$!!!

Emission of relativistic axions are enhanced compared to $a \rightarrow \gamma \gamma !!!$

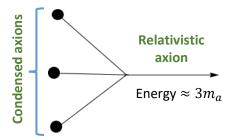
Braaten, AM, Zhang, arXiv:1609.05182

Is there a ($3 a \rightarrow a$) Loss process ??

- o Proposed by Cincinnati group: arXiv:1512.01709, 1608.06911
- Expands axion field ϕ around a classical field ϕ_0 :

ф

Fluctuation


 $\phi = \phi_0 + \phi_0$

Condensate

• Expansion of the interaction potential gives a $\phi_0^3 \tilde{\phi}$ term.

• This seems to allow $3a \rightarrow a$ loss process??

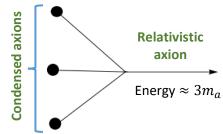
N condensed axions \rightarrow (N-3) condensed axions + 1 relativistic axion

Is there a $(3 a \rightarrow a)$ Loss process ?? No!!

- Proposed by Cincinnati group: arXiv:1512.01709, 1608.06911
- Expands axion field ϕ around a classical field ϕ_0 :

ф

Fluctuation


 $\phi = \phi_0 + \phi_0$

Condensate

• Expansion of the interaction potential gives a $\phi_0^3 \phi$ term.

• This seems to allow $3a \rightarrow a$ loss process??

N condensed axions \rightarrow (N-3) condensed axions + 1 relativistic axion

Is there a ($3 a \rightarrow a$) Loss process ?? No!!

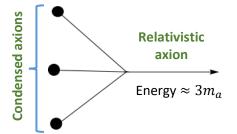
- Proposed by Cincinnati group: arXiv:1512.01709, 1608.06911
- Expands axion field ϕ around a classical field ϕ_0 :

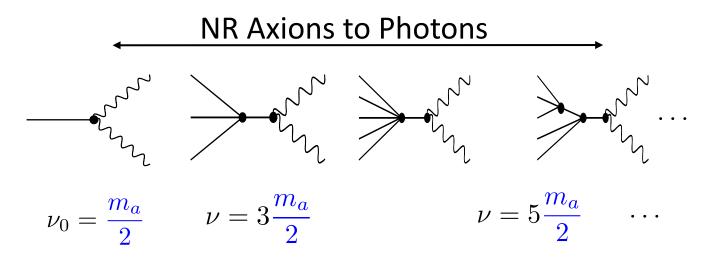
• Expansion of the interaction potential gives a $\phi_0^3 \widetilde{\phi}$ term.

Fluctuation

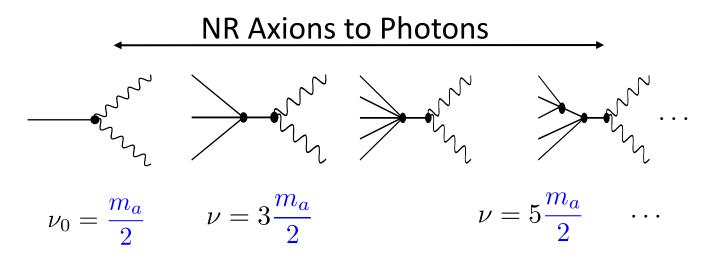
• This seems to allow 3a→a loss process??

N condensed axions \rightarrow (N-3) condensed axions + 1 relativistic axion


○ <u>There is no 3a→a loss process:</u>


 $\phi = \phi_0 + \phi_0$

Condensate


- Equation of motion for ϕ_0 guarantees terms linear in $\tilde{\phi}$ add to zero.
- $\phi_0^3 \tilde{\phi}$ term cancelled by other linear terms.
- Axion effective field theory: No anti-Hermitian term in the EFT Hamiltonian for $3a \rightarrow 3a$ from intermediate single axion state.

14

- For axion mass $m_a \sim 10^{-4}$ ev, frequency $\nu_0 \sim 10$ GHz. Radio frequency
- Odd-integer harmonics of the fundamental radio frequency.

- For axion mass $m_a \sim 10^{-4}$ ev, frequency $\nu_0 \sim 10$ GHz. Radio frequency
- Odd-integer harmonics of the fundamental radio frequency.

Unique feature of dense configuration of axions !!

Braaten, AM , Zhang, arXiv:1609.05182

Fast Radio Burst

- Burst of radio frequency photons over time scale of 1 ms.
- No similar observations in optical, X rays and γ rays till now.
- 23 events observed since 2007.
- Have only been observed at <u>1.4 GHz</u> (Parkes) & <u>0.8 GHz</u> (UTMOST)
- Probably coming from extra-galactic sources (large dispersion measure)
- Energy released on the scale of 10^{40} erg ~ $\frac{10^{-14} M_{\odot}}{M_{\odot}}$ (If isotropic)
- Strong linear polarization.

Recent review: Katz, arXiv:1604.01799 Online database: <u>http://www.astronomy.swin.edu.au/pulsar/frbcat</u> Are Axion stars the source of Fast Radio Burst??

Observed frequency: 1.4 GHz

For axion mass: $10^{-6}~{\rm eV} < m_a < 10^{-2} {\rm eV}$, photons emitted have $1~{\rm GHz} < \nu < 1000~{\rm GHz}$

Time duration: ~ 1 ms

Possible sources involve remnants of stellar collapse, collision of compact objects like neutron stars, collapse of dilute axion star to dense axion star ?? , etc...

• Energy released: up to $\sim 10^{-14} M_{\odot}$

Dilute axion star critical mass : $6 imes 10^{-14} M_{\odot}$

FRB scenarios involving axion stars

• Collision of a dilute axion star with a neutron star

FRB signal generated from coherent electric dipole radiation

From electrons in atmosphere Iwazaki, hep-ph/9908468

From neutrons in outer core of neutron star Raby, PRD 94, 103004 (2016)

• Collapse of dilute axion stars above the critical mass

FRB signal from coherent radiation through maser mechanism Tkachev, arXiv:1411.3900

- Collision of axion stars with the accretion disk of black hole
 FRB signal from coherent oscillation of electrons in strong magnetic field Tkachev, arXiv:1707.04827
- Collision of a dense axion star with a neutron star ??

Summary

- Inelastic reactions like (2j + 1)a → γγ and (2j)a → aa change the number of non-relativistic axions in the axion stars.
- Inelastic reactions like $3a \rightarrow a$ not possible.
- Dilute axion star: All other processes are highly suppressed compared to $a \rightarrow \gamma \gamma$.
- Dense axion star: Emission of relativistic axions is enhanced compared to $a \rightarrow \gamma \gamma$.
- The inelastic reactions can be important during collapse of dilute axion star to dense axion star.
- The odd integer harmonics of fundamental radio frequency is a unique signature of dense configuration of axions.
- Could axion stars explain fast radio burst (FRB).??

Other recent works regarding Axion stars:

- Collapse of self-gravitating Bose Einstein condensate with attractive self interactions P.H. Chavanis, PRD 94, 083007 (2016).
- Relativistic Axions from collapsing Bose stars. Levkov et al, arxiv 1609:03611.
- Black Hole formation from Axion stars Helfer et al, arxiv 1609:04724.
- Hydrogen Axion star: Metallic Hydrogen Bound to a QCD Axion BEC. Bai et al, arxiv 1612:00438.
- QCD Axion star collapse with chiral potential.
 Eby et al, arxiv 1702:05504.

Is there a ($\mathbb{B} \cong \longrightarrow \mathbb{B}$) Loss process ??

Proposed by Cincinnati group : arXiv:1512.01709, 1608.06911

- Condensed axions : $E \approx m_a$. $p \sim 1/(\text{radius of axion star}) \sim 10^{-17} m_a$.
- Conservation of Energy, emitted axion: $E \approx 3m_a$; $p \approx \sqrt{2} m_a$.
- Momentum cannot be conserved in $3a \rightarrow a$!
- Cincinnati group suggested momentum could be conserved in the reaction N condensed axions → (N-3) condensed axions + 1 relativistic axion through <u>recoil of (N-3)</u> condensed axions.
- **Can momentum of emitted axion be balanced by recoil of axion star?**
 - 1. Axion star : Superfluid of condensed axions. So cannot absorb the recoil momentum like a rigid body.
 - 2. Weak coupling: Momentum transfer for each additional axion costs factor $\binom{m_a}{f_a}^2 \sim 10^{-48}.$
 - 3. Axion effective field theory: No anti-Hermitian term in the EFT Hamiltonian for $3a \rightarrow 3a$ from $3a \rightarrow a$. Must be exponentially suppressed!!

Braaten et.al, arxiv 1604.00669