Sample variance in the local measurements of H₀

Heidi Wu (Caltech→OSU) with Dragan Huterer (U. Michigan) arXiv:1706.09723, MNRAS accepted

Tension in H₀ measurements

$H_0^{\text{local}} = 73.24 \pm 1.74 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (Riess et al. 2016)

$H_0^{CMB} = 66.93 \pm 0.62 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (*Planck* int. XLVI 2016)

$H_0^{\text{local}} = 73.24 \pm 1.74 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (Riess et al. 2016)

$H_0^{CMB} = 66.93 \pm 0.62 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (*Planck* int. XLVI 2016)

Can we alleviate this tension by considering the **sample variance** of local measurements?

$H_0^{CMB} = 66.93 \pm 0.62 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (*Planck* int. XLVI. 2016)

- Measuring the sound horizon scale at recombination, which constrains $\Omega_c h^2$
- Re-analyses (*Planck* int. LI):
 - $\ell > 800$ pulls H₀ down
 - ℓ < 30 pulls H₀ up

$H_0^{CMB} = 66.93 \pm 0.62 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (*Planck* int. XLVI. 2016)

- Measuring the sound horizon scale at recombination, which constrains $\Omega_c h^2$
- Re-analyses (*Planck* int. LI):
 - $\ell > 800$ pulls H₀ down
 - ℓ < 30 pulls H₀ up
- Beyond 6 parameters:
 - $\Delta N_{eff} = 0.39$ leads to 70.6 ± 1.0, but high σ_8 (*Planck* 15 XIII)
 - unchanged when including running, running of the running (Obied+17)

$H_0^{\text{local}} = 73.24 \pm 1.74 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (Riess et al. 2016)

- Distance ladder
 - 4 distance anchors (geometry + Cepheids)
 - 19 distance calibrators (Cepheids + SNe Ia)
 - 217 SNe Ia at 0.023 < z < 0.15

$H_0^{\text{local}} = 73.24 \pm 1.74 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (Riess et al. 2016)

- Distance ladder
 - 4 distance anchors (geometry + Cepheids)
 - 19 distance calibrators (Cepheids + SNe Ia)
 - 217 SNe Ia at 0.023 < z < 0.15
- Re-analyses
 - Cardona et al. (2017): 73.75 ± 2.11
 - Zhang et al. (2017): $72.5 \pm 3.1 \pm 0.77$ (blind)
 - Feeney et al. (2017): 72.72 ± 1.67
 - Follin & Knox (2017): 73.3 ± 1.7

Hubble Diagram (Hubble 1929) $v = H_0 d (z \ll 1)$

6

Hubble Diagram (Hubble 1929) $v = H_0 d (z \ll 1)$

If v is biased high, H₀ will also be biased high.

The **intercept** and the SN **absolute magnitude** determine H₀

For now let's assume that the *Planck* H₀ is the true global value.

How much ΔH_0^{loc} can come from sample variance?

8

For now let's assume that the *Planck* H₀ is the true global value.

How much ΔH_0^{loc} can come from sample variance?

We use N-body simulations to characterize the variance of H₀^{loc} due to **SN sparseness** and **local density fluctuations**.

Dark Sky Simulations (Skillman et al. 2014)

- N-body simulations (2HOT)
- 8 h⁻¹Gpc, divided into 512 subvolumes of 1 h⁻¹Gpc
- resolving $2x10^{12}$ M $_{\odot}$ halos (about Milky Way mass)

9

• on-line database (yt + darksky.slac.stanford.edu)

SN sample used in Riess+16: "Supercal" (Scolnic et al. 2014, 2015)

- Uniform photometric calibration from Pan-STARRS1
- SALT2 light-curve model
- Correction of distance bias
- 217 Type Ia supernovae at 0.023 < z < 0.15 (70 h⁻¹Mpc to 500 h⁻¹Mpc)

Redshift distribution 217 SNe Ia from Riess+16

11

Skewed n(z) increases sample variance

12

Angular distribution 217 SNe Ia from Riess+16

13

Take a box, pick an observer

Calculating H₀^{loc} sample variance from sims

14

Take a box, pick an observer

Compare the 3d coordinates of observed SNe and halos

14

Assign SNe to nearest halos

PDF of ΔH_0^{loc} from ~1.5 million realizations

Sample variance of ΔH_0^{loc} under various assumptions

	all halos, no	SN n(z)	+3D distr.	+(∆mag) ⁻²
	weighting	weighting	+rotations	weighting
σ (ΔH ₀ ^{loc}) [km s ⁻¹ Mpc ⁻¹]	0.12	0.38	0.42	0.31

16

Bias in H₀^{loc} vs. density contrast

From linear theory:

$$\frac{\Delta H}{H} = -\frac{1}{3}\delta f(\Omega_M)$$

$$f(\Omega_M,z)\approx \left(\Omega_M(z)\right)^\gamma\approx 0.5$$

Observations of δ are highly uncertain

Evidence of a local under-density?

Evidence of a local under-density?

galaxy luminosity density from 2M++

$\Delta H_0^{loc} \propto density contrast$

20

Comparison with observations

21

How to resolve the H₀ tension?

22

How to resolve the H₀ tension?

Other distance calibrations for SNe:

- Tully-Fisher relation: e.g. Sorce+12 (75.2 \pm 3.0)
- Tip of the red giant branch (TRGB): e.g. Tammann+13 (63.7 ± 2.3)

How to resolve the H₀ tension?

Other distance calibrations for SNe:

- Tully-Fisher relation: e.g. Sorce+12 (75.2 \pm 3.0)
- Tip of the red giant branch (TRGB): e.g. Tammann+13 (63.7 \pm 2.3)

Other independent probes for H₀:

- Time delay of gravitational lensing: e.g. Suyu+13, Bonvin+17 (71.9^{+2.4}-3.0)
- Baryon acoustic oscillations: e.g. Aubourg+15 (67.3 ±1.1), Addison+17
- Gravitational wave from binary neutron stars

Summary

- Sample variance in H₀^{loc} is ~ 0.3 km s⁻¹ Mpc⁻¹, which is too small to alleviate the tension between local (~73) and CMB (~67) measurements.
- This tension would require a 80% underdensity to alleviate, which is highly unlikely in a ΛCDM universe.

Summary

- Sample variance in H₀^{loc} is ~ 0.3 km s⁻¹ Mpc⁻¹, which is too small to alleviate the tension between local (~73) and CMB (~67) measurements.
- This tension would require a 80% underdensity to alleviate, which is highly unlikely in a ΛCDM universe.

We're still not sure if there is a Hubble bubble. Even if there is, it cannot resolve the tension.