Improving angular resolution in IceCube cascades
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lceCube

Over 5000 deployed Digital Optical Modules (DOMSs) on 86 strings

IceCube Lab
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Cascades in IceCube

v, +N>e+X Hadronic or EM shower from
v+ N->v, +X neutral-current or v, charge-
current

reconstruction
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Waveforms and cascade orientation

Bert “Panopticon” plot
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Time-windows where PMT saturates or marked
as errata are shaded in red

Reconstruction relies on
waveform amplitude and
timing

Noticeable differences
between best-fit and reversed-
orientation directions

Some disagreement between
best-fit and data remain and
hint that there is room to
improve reconstruction



Cascade resolutions for HESE
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Two approaches to improved resolutions

1. Include more data

A few examples of

unused waveforms

p.e./50ns

Bert waveforms on closest string

1.4
1.2 4
1.0
0.8
0.6

p.e./50ns

0.4
1
0.2

0.0 - 0 e
96 9.8 10.0 10.2 10.4 10.6
Hs Hns

les 53,20, Bright le3s 53,21, Bright

w
c
o

n
=~

Q

9.6 9.8 10.0 10.2 10.4 10.6

2. Improve ice model, reduce ice uncertainties

Currently an
effective ice-
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Bright DOMs in high energy events

Fractional q of bright DOMs
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Define Q,,, as the mean total

charge of all hit DOMs

DOMs with Q. > 10*Q
are classified as “Bright”

avg

PMT is not necessarily
saturated, but excluded
because systematic
uncertainties start to
dominate over statistical
errors in fitting the
waveforms



Distance to vertex of brightest DOMs

Top 10 energetic cascades in HESE 6 year

Ernie

directional

104 reconstruction!
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Procedure

Ref. arXiv:1309.7010

1. Simulate an EM cascade at fixed location/direction and various

energies with latest version of ice-model

2. For each simulated cascade, reconstruct with direct photon

propagation

3. Approximate Bayesian Method (ABC) to get angular

uncertainty

Reconstruction can be performed with different settings

 |dentical or different ice-models: ice-rec
e  Maximum per-DOM charge: Q

» Effective ice-model uncertainty parameter: o (in a few slides)




Effect of Q

. ON angular resolution
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Tested with an
identical sim-reco
ice-model (3.2)
and a different
reco ice-model
(mie)

Both show a trend
towards better
angular resolution
as more DOMs are
included

(increasing Q)
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Two approaches to improved resolutions

1. Include more data
Bert waveforms on closest string

A few examples of g S Brlg.ht DOI\d/I§
unused waveforms 3 = are lgnored in
\ % e 3 reconstruction
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2. Improve ice model, reduce ice uncertainties
D. Chirkin
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E

‘ective ice-model uncertainty Ref ariv:1304.0735

Without any ice-model systematic, simulation must
describe data completely within statistical errors

Add smearing to predicted charge on each DOM that
penalizes the likelihood with log-normal
%
—ln(—)

distribution: exp —=

Effective ice-model uncertainty parameterized with o;
based on data from in-situ LED calibration devices



Angular resolution vs energy and o
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‘ect of ice-model and o on angular resolution
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With more simulated photons

Direct photon reconstruction
mean statistical uncertainties Increased photon statistics
in MC improves angular

/\ resolution even more!

i . . . i Limited by GPU time
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summary

Room to improve cascade reconstruction

Currently affected by
1. Bright DOM exclusions
2. lce-model and ice-model uncertainty

There is a concerted, ongoing effort to incorporate more
waveform data and improve ice-models.

Even more improvement with increased direct photon
statistics but this may prove to be impractical.
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Backups
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Bright but not saturated
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DirectFit

e DirectFit LLH includes an effective ice-model uncertainty that smears
the charge on each DOM +/- 10% (default)

* This ensures that the fit isn’t too biased by high statistic DOMs

i/ Ms d; 1 :
—Inl = E [silns/ﬁ + d; In /Zld—|—2 21n2& .
- M e o s

“Likelihood description for comparing data with simulation of limited statistics”,
D. Chirkin, arXiv:1304.0735



DirectFit

Capable of reconstructing data with direct photon simulation with ppc

Likelihood function different from the mainstream recos as the
expectations from simulation is no longer analytic (e.g. Millipede)

Fit routine proceeds through several iterations of a localized random
search where many position and direction are tested and the best fit
energies at those steps are calculated.

Following fit, approximate Bayesian calculation (ABC) method applied
based on fit results to estimate posterior via MCMC.



Procedure

1. Simulate a EM cascade with ppc at
* r=(0, 0, 300)m = 1648m depth
e 0=(90 zenith, 0 azimuth)
* |ce-sim=3.2
 E=1E[3, 4, ... 7] GeV

2. For each simulated cascade, use DirectFit to try and reconstruct the
best fit point assuming
* |ce-rec=(spice-Mie, 3.2)
 0=(0.0, 0.05, 0.1) ice model uncertainty

* Q,.=(300, 500, 1000, 3000, 5000, 10000) p.e. cut off such that DOMs with
Qpov>Q,,. are excluded

3. Once best fit is found, sample from the approximate posterior
distribution P(r, 8|D) for each combination of ice models, energies,
and sigmas

* Std deviation of this sample gives resolution: 6r, 60, 6E

E_Etrue
* An lls: ———= etc.
d pulls 5K etc



An example: step 1, simulation

1. E=100 TeV, ice=spice-3.2 (latest), r=(0, 0, 300), 6=(90z, 0a)

IceCube-86 (78+8) interstring (surface) distances
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An example: step 2, reconstruction

1. E=100 TeV, ice=spice-3.2 (latest), r=(0, 0, 300), 6=(90z, 0a), 0=0.0
2. DirectFit steps to the minimum
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An example: step 3, error calculation

1. E=100 TeV, ice=spice-3.2 (latest), r=(0, 0, 300), 6=(90z, 0a), 0=0.0
2. DirectFit steps to the minimum
3. Generate probabilities across the parameter space
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