IceCube Search for Galactic Neutrino Sources using the HAWC 2HWC Catalog

Joshua Wood TeVPA 2017

Basic Idea

Detectors & Datasets

Analyses (1) Stacked point source (2) Spatial Template

Summary

Basic Idea

- Looking for Galactic neutrino sources through "Pevatrons" which satisfy energetics to produce cosmic rays up to knee in the cosmic-ray spectrum
- Supernova remnants meet this condition
- "Pevatrons" will produce pionic gamma-rays whose spectrum extends to ~300 TeV
- Pionic TeV gamma-rays should come with neutrinos observable in IceCube

Detectors & Datasets

 HAWC is a TeV gamma-ray observatory located at 19° N

> Energy Range: **0.5-100 TeV** PSF: **~0.2° at high energy** FOV: **~2 sr**

 IceCube is a TeV neutrino observatory at South Pole

Energy Range: 0.1 TeV - 1 EeV
PSF: ~0.5° median (tracks)
FOV: 4π sr, most sensitive to
Northern hemisphere

using Northern $\nu\mu$ track sample

HAWC's 2HWC Catalog

- 17 Month dataset, ~5-10% Crab sensitivity
- 39 Detected sources, expect 0.5 false detections
- 19 new sources >0.5° from known TeV sources

AstrophysJ. 843 (2017) 1, 40

Northern Track Sample

- Up going & horizontal tracks = Earth filtered
- Estimated 99.7% pure ν_{μ} sample
- 350,000 events in 6 yr, this work is 4 yrs of IC86 for now
- Well modeled with MC, use MC to develop likelihood analyses for Galactic neutrinos

Stacked Analysis

- **Goal:** Test for ν made directly at 2HWC Galactic TeV sources
- <u>Exclude PWN</u> because most seem to be dominantly leptonic
- Standard stacked v point source likelihood technique with conv. atm. v background
- Signal energy weights are E^{-2.7} power law w/exponential cutoff
- Relative source weights based on integral v flux expected under p-p interactions

Source		$RA[^{\circ}]$	Dec [°]
1. 2HW	C J1844–032	281.07	-3.25
2. 2HW	C J1847–018	281.95	-1.83
3. 2HW	C J1852 $+013^*$	283.01	1.38
4. 2HW	C J1857 $+027$	284.33	2.80
5. 2HW	C J1902 $+048^*$	285.51	4.86
6. 2HW	C J1907+084*	286.79	8.50
7. 2HW	C J1908+063	287.05	6.39
8. 2HW	C J1912+099	288.11	9.93
9. 2HW	C J1914+117*	288.68	11.72
10. 2HW	C J1921+131	290.30	13.13
11. 2HW	C J1922+140	290.70	14.09
12. 2HW	C J1928+177	292.15	17.78
13. 2HW	C J1938+238	294.74	23.81
14. 2HW	C J1953+294	298.26	29.48
15. 2HW	C J1955+285	298.83	28.59
16. 2HW	C J2006+341	301.55	34.18
17. 2HW	C J2019+367	304.94	36.80
18. 2HW	C J2020+403	305.16	40.37
19. 2HW	C J2024+417*	306.04	41.76
20. 2HW	C J2031+415	307.93	41.51

Stacked Analysis

Stacked Analysis

Template Analysis

- **Goal:** Test for ν made in "stuff" around Galactic 2HWC sources
- Replace stacked source list with HAWC's flux map of Galactic plane morphology. Convolve w/IceCube acceptance, norm to 1.

• Likelihood analysis with ν weighted by E^{-2.5} power law with exponential cutoff

→ Integral HAWC Galactic plane flux (J. Pretz, APS 2017)

10-4

probability

()

Template Analysis

Summary

- Used MC to model 4 years of IC86 and produce preliminary sensitivities to two Galactic neutrino source search strategies
- Good sensitivity expected, will improve with additional years
- Even a null detection is interesting because we could place a limit on the fraction of hadronically produced photons seen by HAWC
- Future: Our understanding of gamma-ray sources > 50 TeV will only improve with more data, better energy analyses, and outriggers in HAWC (K. Malone - Monday, S. Maranelli -Wednesday) and also CTA when it comes online.

Thanks!

Stacked Likelihood

$$\mathcal{L}(n_s, \gamma, E_{cut}) = \prod_{i=1}^{N} \left(\frac{n_s}{N} S(\boldsymbol{x}_i, \sigma_i, E_i; \gamma, E_{cut}) + (1 - \frac{n_s}{N}) B(\sin \delta_i, E_i) \right)$$

- n_s is the number of neutrino events from the source
- γ is the spectral index of the source
- E_{cut} is the exponential cutoff energy of the source (optional used in our analysis)
- N is the total number of neutrino events in the sample being tested
- x_i are the right ascension and declination coordinates of an event
- σ_i is the per event angular uncertainty
- E_i is the reconstructed energy of an event
- $\sin \delta_i$ is the sine of the event declination
- S is the signal probability density function (PDF)
- B is the background probability density function (PDF)

$$S(\boldsymbol{x}_{i},\sigma_{i},E_{i};\gamma,E_{cut}) = \sum_{j=1}^{M} w_{j} S_{S}(\boldsymbol{x}_{src,j},\boldsymbol{x}_{i},\sigma_{i}) \times S_{E}(\sin\delta_{i},E_{i};\gamma,E_{cut})$$

$$S_{S}(\boldsymbol{x}_{src,j},\boldsymbol{x}_{i},\sigma_{i}) = \frac{1}{2\pi\sigma_{i}^{2}}e^{-|\boldsymbol{x}_{i}-\boldsymbol{x}_{src,j}|^{2}/2\sigma_{i}^{2}} \qquad w_{j} = \frac{m_{j} a_{j}}{w_{tot}}, \quad w_{tot} = \sum_{j=1}^{M} m_{j} a_{j}$$

$$14 \qquad \text{model weight} \quad \text{eff. area}$$

Template Likelihood

$$\mathcal{L}(n_s, \gamma, E_{cut}) = \prod_{i=1}^{N} \left(\frac{n_s}{N} S(\boldsymbol{x}_i, \sigma_i, E_i; \gamma, E_{cut}) + (1 - \frac{n_s}{N}) B(\sin \delta_i, E_i) \right)$$

Same form as stacked likelihood on slide 9, difference is signal term

 $S(\boldsymbol{x}_i, \sigma_i, E_i; \gamma, E_{cut}) = S_S(\boldsymbol{x}_i, \sigma_i) \times S_E(\sin \delta_i, E_i; \gamma, E_{cut})$

value of healpix pixel from HAWC map convolved with acceptance and smoothed with σ_{i}

Template Construction

- Step 1 Select pixels from HAWC map with > 1σ detections. Each pixel is HAWC photon flux at 1 TeV
- Step 2 Convolve with IceCube $\nu\mu$ acceptance for E^{-2.5} w/exponential cutoff
- Step 3 Apply IceCube PSF as gaussian smoothing with σ_{PSF}
- Step 4 Normalize map to 1 so we can treat as a probability