

FLAT-SPECTRUM RADIO-QUASARS with H.E.S.S. II

Matteo Cerruti CNRS, LPNHE, Paris

for the H.E.S.S. Collaboration

TeVPA 2017, Columbus, OH, USA 08/08/17

BLAZARS

Blazar : radio-loud AGN whose relativistic jet points in the direction of the observer

→ emission from the jet dominates over any other AGN component (the disk, the BLR, the X-ray corona,...)

→ non-thermal emission from radio to gamma-rays, and extreme variability

Flat-Spectrum-Radio-Quasars: optical spectrum with broad emission lines
BL Lacertae objets : optical spectrum featureless

BLAZARS

Spectral energy distribution (SED) two distinct components

FSRQs show a peak in IR

BL Lac objects are classified in:

- peak in optical : Low-frequency peaked (LBLs)
- peak en UV/X : High-frequency peaked (HBLs)
- peak >10 KeV : Ultra-highfrequency peaked (UHBLs)

Fossati et al. 1998

BLAZARS

In whichever band you observe, you 'select' a blazar with a given peak frequency

 \rightarrow Radio blazar catalogs and X-ray blazar catalogs don't 100% overlap!

At TeV energies we are dominated by *high-frequency-peaked blazars*

VHE photons are absorbed by pairproduction on the extragalacticbackground-light (EBL)

FSRQs are on average more distant than HBLs \rightarrow higher absorption in VHE band

THE TeV SKY

THE TeV SKY

VHE Flat-Spectrum Radio-Quasars

Six currently known VHE Flat-Spectrum-Radio-Quasars

- 3C 279 (detected with MAGIC in 2006-2007, bright γ -ray flare in 2015, detected with H.E.S.S. II)
- PKS 1222+216 (detected with MAGIC in 2010, detected with VERITAS in 2014)
- PKS 1510-089 (detected with H.E.S.S. in 2009, VHE flare in 2016, seen with H.E.S.S. II & MAGIC)
- S3 0218+35 (z=0.94, most distant VHE source, detected with MAGIC in 2015, gravitationally lensed)
- PKS 1441+25 (z=0.94, detected with MAGIC and VERITAS)
- PKS 0736+017 (new VHE FSRQ, detected with H.E.S.S. II)

Array of 4+1 Cherenkov telescopes located on Khomas Highland, Namibia (23°16' S, 16°30' E)

2012: installation of the central telescope (CT5) 2016: upgrade of H.E.S.S. I cameras

Detection of photons above 30 GeV Energy resolution: ~10% at 1 TeV Angular resolution: ~0.1° at 1 TeV

Array of 4+1 Cherenkov telescopes located on Khomas Highland, Namibia (23°16' S, 16°30' E)

Two different reconstructions: Monoscopic (CT5 only) Stereoscopic (any 2 out of 5 telescopes)

Array of 4+1 Cherenkov telescopes located on Khomas Highland, Namibia (23°16' S, 16°30' E)

Two different reconstructions: Monoscopic (CT5 only) Stereoscopic (any 2 out of 5 telescopes)

Array of 4+1 Cherenkov telescopes located on Khomas Highland, Namibia (23°16' S, 16°30' E)

Two different reconstructions: Monoscopic (CT5 only) Stereoscopic (any 2 out of 5 telescopes)

3C 279

Bright γ -ray flare seen with Fermi-LAT in June 2015:

- 3-days flare with peak flux of 3.6.10-5 cm-2 s-1
- 80 times brighter than 3FGL average
- Minute-scale variability detected with Fermi-LAT
- Target of Opportunity observations with H.E.S.S.

3C 279

H.E.S.S. observations : Detection only during the second night: $E_{threshold} = 66 \text{ GeV}$ (Monoscopic reconstruction) $F_{100 \text{ GeV}} = (2.5 \pm 0.2) \cdot 10^{-12} \text{ cm}^{-2} \text{ s}^{-1} \text{ GeV}^{-1}$ $\Gamma = 4.2 \pm 0.3$ Detection at 8.7 σ in 3 hours of observations

Strictly simultaneous Fermi-LAT – H.E.S.S. II spectrum

H.E.S.S.

Romoli et al. ICRC 2017 arXiv 1708.00882

3C 279

Internal absorption of VHE photons:

- spectrum corrected from EBL absorption (Franceschini et al. 09)
- assumption on intrinsic spectrum (power-law)

- assumption on external photon field & BLR geometry (Finke 2016)

Romoli et al. ICRC 2017 arXiv 1708.00882

PKS 1510-089

Rapid and bright VHE $\gamma\text{-ray}$ flare in May 2016

No counterpart in integral HE γ-ray light-curve, but significant hardening in the spectrum

Optical flux enhanced coincident with VHE flare

MWL lightcurve of the event with nightly averages: (a) H.E.S.S/MAGIC flux, (b) Fermi flux, (c) Fermi index, (d) ATOM flux

HESS

Zacharias et al. ICRC 2017 arXiv 1708.00653

PKS 1510-089

Peaked lightcurve at VHE: maximum flux ~80% Crab (E > 200 GeV) continous decrease to ~7.5% Crab

Minimum variability time-scale: 18 ± 5 minutes

→ size of the emission region $R \sim 10^{15} (\delta/50) \text{ cm}$

Detailed lightcurve of MJD 57538: (a) H.E.S.S/MAGIC flux, (b)Fermi energies, (c) ATOM flux

H.E.S.S.

Zacharias et al. ICRC 2017 arXiv 1708.00653

PKS 1510-089

Break between HE and VHE spectra, constant over both oberving window ($\Delta\Gamma$ ~1.6)

If the break is caused by internal absorption on BLR photons, $\tau \sim 5$

→ location of the emitting region $r \sim 3.10^{17}$ cm

 γ -ray spectrum during the H.E.S.S. window (red) and the MAGIC window (green). VHE spectra corrected for EBL absorption.

Zacharias et al. ICRC 2017 arXiv 1708.00653

PKS 0736+017

Well known radio quasar

- z = 0.1894 (Ho & Kim 2009)
- typical FSRQ optical spectrum
- presence of big-blue bump
- SMBH mass = $10^{8.47} M_{\odot}$ (McLure & Dunlop 2001)
- Host galaxy is a standard giant elliptical (Wright 1998, Kotilainen 1998, ++)

Cerruti et al. ICRC 2017 arXiv 1708.00658

PKS 0736+017

H.E.S.S. ToO observations following a Fermi-LAT flare Detection during the second night only

Cerruti et al. ICRC 2017 arXiv 1708.00658

PKS 0736+017

Fermi-LAT spectrum extrapolated towards higher energies, including EBL absorption \rightarrow spectral break between LAT and H.E.S.S.

Cerruti et al. ICRC 2017 arXiv 1708.00658

CONCLUSIONS

H.E.S.S. II low threshold makes it an excellent instrument to study distant and low-frequency-peaked blazars

Target of Opportunity observations are a fundamental part of the H.E.S.S. extragalactic observing program

CONCLUSIONS

Three important results on gamma-ray FSRQs:

- Re-detection of 3C279 after the MAGIC discovery in 2006/2007, simultaneous with the brightest LAT flare seen from this source
- Detection of an unprecendeted VHE flare from PKS 1510-089
- Discovery of a new VHE FSRQ: PKS 0736+017 (z = 0.189, the nearest VHE quasar so far)

Common conclusion: detection of VHE photons allows us to put a lower limit to the location of the emitting region; spectral break with Fermi-LAT means that it can be within the BLR

