Aug. 8th, 2017 TeVPA, Columbus

Columbia University

ar

v:1705.06655)

.

VE TVO

.

¥.

XENON Derk Matter Project

XENON World

~130 scientists from 22 institutions

Laboratori Nazionali del Gran Sasso (LNGS), Italy

XENON1T

Qing Lin (Columbia)

Phases of the XENON program

XENON10

XENON100

XENON1T / XENONnT

2005-2007 15 cm drift TPC – 25 kg

Achieved (2007) $\sigma_{SI} = 8.8 \text{ x } 10^{-44} \text{ cm}^2$ 2008-2016 30 cm drift TPC – 161 kg

Achieved (2016) $\sigma_{SI} = 1.1 \text{ x } 10^{-45} \text{ cm}^2$ 2013-2018 / 2019-2023 100 cm / 144 cm drift TPC - 3200 kg / ~8000 kg

Projected (2018) / Projected (2023) $\sigma_{SI} = 1.6 \text{ x } 10^{-47} \text{ cm}^2 \text{ / } \sigma_{SI} = 1.6 \text{ x } 10^{-48} \text{ cm}^2$

Qing Lin (Columbia)

Time Projection Chamber

Eur. Phys. J. C 75, no. 11, 546 (2015)

Qing Lin (Columbia)

XENON1T: First Results @ TeVPA2017

Liquid Xenon

- This talk highlights the analysis of the first science run (SR0)
- We continue to take data after the earthquake and analyzing SR1 now

Detector Stability

- LXe temperature stable at -96.07 °C, RMS 0.04 °C
- GXe pressure stable at 1.934 bar, RMS 0.001 bar

Backup LN2

Qing Lin (Columbia)

Xe Purification

Performance: evolution of e-lifetime, monitored regularly with ERs calibration sources, well described by physical model. Current value approaching the max drift time of the LXeTPC. **Goal**: remove electronegative impurities below 1 ppb (O2 equivalent) in the Xe gas fill and from outgassing of detector's components with continuous circulation of Xe gas at high speed through hot getters

Qing Lin (Columbia)

Kr Reduction

Qing Lin (Columbia)

Waveform simulation tuned to match data

(+ +)

Qing Lin (Columbia)

- Detection efficiency dominated by 3-fold coincidence requirement
 - Estimated via novel **waveform simulation** including systematic uncertainties
- Selection efficiencies estimated from control samples or simulation
- Search region defined within 3-70 PE in cS1

9

Energy response

 $E = (n_{ph} + n_e) \cdot W = \left(\frac{S1}{g1} + \frac{S2}{g2}\right) \cdot W$

- Excellent linearity with electronic recoil energy from 40 keV to 2.2 MeV
- g1 = 0.1442 ± 0.0068 (sys) PE/ photon corresponds to a photon detection efficiency of 12.5 ± 0.6% (taking into account double PE emission)
 - Assumptions of <u>past MC</u> <u>sensitivity</u> projected 12.1%.
- g2: the amplification of charge signal corresponds to near full extraction of charges from the liquid.

Qing Lin (Columbia)

Background model

- ER and NR spectral shapes derived from models fitted to calibration data
- Other background expectations are data-driven, derived from control samples

Background & Signal Rates	Total	Reference
Electronic recoils (ER)	62 ± 8	0.26 (+0.11)(-0.07)
Radiogenic neutrons (n)	0.05 ± 0.01	0.02
CNNS (v)	0.02	0.01
Accidental coincidences (acc)	0.22 ± 0.01	0.06
Wall leakage (<i>wall</i>)	0.52 ± 0.32	0.01
Anomalous (<i>anom</i>)	0.09 (+0.12)(-0.06)	0.01 ± 0.01
Total background	63 ± 8	0.36 (+0.11)(-0.07)

Qing Lin (Columbia)

- Extended unbinned profile likelihood analysis
- Most significant ER & NR shape parameters included from cal. fits
- Normalization uncertainties for all components
- Safeguard to protect against spurious mis-modeling of background

Qing Lin (Columbia)

XENON1T: First Results @ TeVPA2017

XENON1T Summary

- The world's largest LXe dark matter detector is taking data!
- Lowest ER background achieved!
- >100 ton-days of **new** data accumulated and being analyzed!
- Stay tuned!!!

XENON1T / XENONnT

2013-2018 / 2019-2023 100 cm / 144 cm drift TPC - 3200 kg / ~8000 kg

Projected (2018) / Projected (2023) $\sigma_{SI} = 1.6 \text{ x } 10^{-47} \text{ cm}^2 \text{ / } \sigma_{SI} = 1.6 \text{ x } 10^{-48} \text{ cm}^2$

Thank you!

Appendix

The XENON1T Experiment

Cryostat in the Water Tank

G d

G

Xenon Plants

Xe Cooling System

Goal: liquefy 3300 Kg of Xe and maintain the xenon in the cryostat in liquid form, at a constant temperature and pressure, and so for years without interruption.

Real Waveform Example 1

Qing Lin (Columbia)

XENON1T: First Results @ TeVPA2017

Real Waveform Example 2

Qing Lin (Columbia)

XENON1T: First Results @ TeVPA2017

Light/Charge Yield Stability

From Kr83m and activated Xe131m, variation in LY and CY is at ~1% level.

Qing Lin (Columbia)

Signal Corrections

S1 Relative LCE

Qing Lin (Columbia)

The ER and NR Models

 Background and signal predictions from tuned models

JCAP 1604 no. 4, 027 (2016)

Qing Lin (Columbia)

G d

G d

Bottom PMTs

Cathode mesh

Liquid Xenon

Efficiencies from

waveform

simulator and real

data

Samples for

statistical

inference

or models

The ER and NR Models

Qing Lin (Columbia)

(+(+)

Rn220 Calibration

Qing Lin (Columbia)

XENON1T: First Results @ TeVPA 2017

30

AmBe Calibration

A

Event Selection

Data quality and selection cuts tuned to calibration data

Position Reconstruction

 Position resolution (RMS) is less than 1 cm inside the FV, and ~2 cm outside the FV, estimated using the difference from two peaks (32 keV and 9 keV) from Kr83m events.

Predicting Backgrounds

Most dominant component

- ER/NR background predictions from fitted models.
- Other background predictions are data-driven, derived from control samples
- Correlated shape and normalization uncertainties including prior constraints

Qing Lin (Columbia)