

Dark Matter search results from PandaX-II

Yong Yang, Shanghai Jiao Tong University On behalf of PandaX-II Collaboration

TeVPA, 2017-08-08

PandaX-II detector

- 60 cm x 60 cm cylindrical TPC
- 580-kg of LXe in sensitive region, 1.2ton LXe in total
- 55 top + 55 bottom R11410 3" target PMTs (split –ve and +ve HV)
- 24 top + 24 bottom R8520 1" VETO PMTs

PandaX-II run history

- Run9 = 79.8 days, exposure: 26.2 ton-day
- Run10 = 77.1 days, exposure: 27.9 ton-day
- Largest reported DM exposure to date

Improved electron lifetime

- Electron lifetime on average 800 μs (1.4 m drift distance) in Run 10, and generally stable
- Significantly improved from Run 9

Updates on trigger for DAQ

Updates on trigger for DAQ

Data-driven trigger turn-on curve

Real data-driven determination of trigger threshold using off-trigger-window S2s \Rightarrow threshold 50 PE, about 2 photoelectrons. (before ~80 PE)

Zero-suppression

- In PandaX-II, electron maximum drift time is 60cm / (1.7mm/μs) ~ 350 μs
- The recording length of one event is 1 ms. CAEN 724 digitizer: 100MS/s → 10⁵ samples/event/channel, huge amount data.
- Zero Length Encoding (ZLE) applied to record data above threshold (plus a few before and after)

SPE efficiency due to ZLE

Channel-by-channel ZLE efficiency measured from low-intensity LED runs (single photon data) with/wo ZLE algorithm applied in data acquisition.

ZLE impact on S1 efficiency

 Average efficiency for 3 PE (S1 threshold) is 80% using LED data.

ZLE impact on S2

- S2 efficiency estimated by using S2 charge collected by the high gain PMTs ($\varepsilon_{ZLE} > 95\%$) as a true estimator.
- Little impact to S2, little impact to position reconstruction

NR Calibration data

NR band: mean and RMS

A tuning of the N_{ex}/N_i (excitation/ionization) parameter is made on the NEST model, after which the data/MC yield good agreement

ER calibration data

Comparisons in S1 slices

Background level in new data

	Run9	Run10	1 mDRU =
	(mDRU)	(mDRU)	Original ¹²
Xe127	0.42	0.033	gone, add
Tritium	0	0.22	"surface"
Kr85	1.19	0.20	Based on
Rn222	0.13	0.10	Reduced 6
Rn220	0.01	0.02	
Detector ER	0.20	0.21	These are
Solar neutrino	0.01	0.01	Run 9 and
Xe136	0.0022	0.0023	
Total	1.95	0.79	Reduced 2

10⁻³ evts/keV/kg/day

 27 Xe (cosmogenic, 36-day $au_{1/2}$) litional introduced by a fresh bottle. Down 13 times

best fit to data (later)

6 times

consistent between **Run 10**

Krypton: Internal background

- krypton is intrinsically present on the ppb (parts per billion level=10⁻⁹ Kr/Xe) in commercially available xenon. (In atmosphere, ppm=10⁻⁶ level)
- Kr85/Kr = $2x10^{-11}$

Radiation type	Energy (keV)	Intensity (%)	
βī	тах. 173.0 avg. 47.5	0.437	
βī₂ 1	тах. 678.0 а v g. 251.4	99.563	
γ ₁	514.0	0.434	

Krypton background

- Use (β,γ) delayed coincidence tag
- 13 events found in target
 ⇒ 6.6(1.8) ppt of Kr in Xe
- Reduced by 6 times from previous run (run 9)

Energy spectrum

- MC: best fit to data (shape fixed).
- Tritium contribution extracted from the fit.

Data matter search data

	Data in FV	Below NR median	Expected Bkg below NR median
Run9	389	1	2.4
Run10	177	0	2.1

Results on SI cross sections

- Profile likelihood fits made to the data in grids of $(m_{\chi}, \sigma_{\chi})$.
- 90% upper limits produced comparison of test static to toy MC, and power-constrained to -1σ
- Improved from PandaX-II 2016 limit ~4 times for mass>30 GeV.
- More constraining than LUX and XENON1T 2017

Summary

- 54 ton-year exposure of PandaX-II gives no hint of WIMP signals.
- Recent improvement includes:
 - Better trigger method
 - Better understand of efficiency due to zerosuppression
 - Better NR/ER modeling
 - Lower background
- Produced strongest SI limits for high masses. Minimum 6x10⁻⁴⁷ cm² at 50 GeV.

Thanks for your attention