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Searching for thin dark disks



Why look for dark disks?
➤ In analogy to baryons, if dark matter has a way to dissipate 

energy, it can cool enough to pancake (Fan et al.) 
➤ This can happen for a variety of mechanisms, as long as 

there is dissipation (McCullough & Randall)

➤ The dark matter would 
have to live in a 
multicomponent 
“hidden sector” where 
only a fraction is 
interacting strongly 
enough to cool 
substantially



Indirect signatures of dark disks
➤ Enhanced direct detection signal 

(McCullough & Randall, Bruch et al.) 
➤ Co-rotation of Andromeda satellites 

(Randall & Scholtz) 
➤ Periodic disruption of comet trajectories 

causing mass extinction events (Randall 
& Reece) 

➤  Collapsed dark matter objects can 
account for the point-like nature of the 
inner galaxy GeV excess (Agrawal & 
Randall) 

➤ Dynamical influence on local stars in the 
Milky Way (McKee et al., Kramer & 
Randall)



The Gaia Mission



With Gaia’s resolution you 
can resolve hairs on my head 
from Columbus while I visit 

the Golden Gate Bridge



Some goals of Gaia:
➤ High precision astrometry of ~1 billion stars (few percent of 

visible stars in Milky Way galaxy) 
➤ Repeated monitoring of each target over a several year 

period means perpendicular velocity resolution of ~km/s 
and parallax distances with percent level accuracy 

➤ On-board spectrometer to determine radial velocities 
➤ Complete 6D phase space information even for dim, far stars 

(e.g. the sun at ~1 kpc) which means we are statistics 
limited near the galactic plane



Gaia already has data
➤ DR1 is a continuation of Tycho with proper motions (TGAS) 
➤ DR2 is scheduled for 2018 and will have the full 6D 

information (parallax, proper motions, etc)



Analysis



ANALYSIS METHODS IN THE LITERATURE

➤ Method 1: Calculate the total surface density and compare to 
the summed surface density of visible components, which is 
extrapolated from the central density. If there is a deficit then 
this can be a dark disk! (McKee et al., Bovy & Tremaine, etc.) 

➤ Method 2: Don’t extrapolate the central density, instead self-
consistently include a dark disk and calculate the “pinching” 
effect it has on the visible components. A dark disk can make 
room for itself and thus this is the more self-consistent and 
conservative analysis. (Kramer & Randall)



PREDICTING THE TRACER PROFILE

3

In the limiting case where there is only one population of stars, the solution to this equation is

⇢(z) = ⇢(0) sech2
⇣p

2⇡G⇢(0) z/�
⌘

(12)

where for notational convenience � now denotes the vertical velocity dispersion. Also, we are assuming that the mass
density ⇢ is proportional to the number density ⌫, i.e. that while there may be some scatter in the mean mass of
tracer stars, this does not have any dependence on z.

The ansatz of Eq. (12) will be the starting point for our iterative solver, which has two steps per iteration. On the
nth iteration, the first step is to compute

�(n)(z) = 4⇡G
X

A

Z z

0

dz0
Z z0

0

dz00⇢(n)A (z00) (13)

and then the solver takes the next step by computing the updated density profile for each population,

⇢(n+1)

A (z) = ⇢A(0) e
��

(n)
(z)/�2

A . (14)

The intuitive e↵ect of adding more gravitating populations (and thus more mass density) will be to compress the
naive single-population density profile where more mass is concentrated at the galactic midplane.

Once we are equipped with a converged gravitational potential for the combined components in the galactic disk,
we can predict the vertical density profile for a given tracer population. Since we are focusing on vertical motion,
we assume a form for the distribution function where the motion in the z direction is separable from the other
components, which is morally equivalent to dropping the tilt, azimuthal, and rotation curve terms as we have done
above. Then for this z component of the distribution function, the Boltzmann equation reads

vz@zfA � @z�@vzfA = 0 (15)

where again we are dropping time derivatives. Any function of the form F(v2z/2 + �(z)) will satisfy the above
di↵erential equation. We also note that

Z
dvzfA(z, vz) = ⌫A(z) ) fA(z, vz) = ⌫A(z)fA,z(vz) (16)

where fA,z(vz) is the velocity distribution function at some fixed height z, normalized to unity. [KS: insert what this
is for the single population case, can be found in one of the exercises in B&T] With the above two facts in mind, we
can write

⌫A(z) = ⌫A(0)

Z
dvzfA,0

⇣p
v2z + 2�(z)

⌘
(17)

Therefore, once we know the gravitational potential, if we have a measurement of the velocity distribution function
for tracers at the midplane z = 0, we can solve for the shape of the tracer profile.

III. ANALYSIS PIPELINE AND MOCK DATA

A. Mass Model

In iteratively solving for the profiles of various disk components, only two pieces of information are necessary since
we consider stars so close to the galactic plane [KS: quantify]: the central density ⇢(0) and the velocity dispersion �.
For the baryonic components of the disk, these quantities can be measured with varying degrees of certainty depending
on the specific component.

In compiling the values of the relevant measured quantities, we aggregate various references in the literature.
Our mass model, shown in Table I, most resembles that of Ref. [9], which we will refer to as the KR mass model.
In particular, we use the most up-do-date gas parameters [10] and measurements of stars and compact objects
[11]. However, there are several key di↵erences between our mass model and the KR mass model. First, we omit
contributions from the thick stellar disk and stellar halo, since the values quoted from Ref. [11] already take those
components into account and redistribute their contributions to the appropriate stellar populations. Next, we include
uncertainties in all measured parameters, which is uniquely necessary for our analysis since we marginalize over
di↵erent possible mass models as described in Section III B. Many of the populations shown in Table I have precise
errors on their parameters tabulated in the literature, for instance the gas parameters [10] and the densities of compact

Preliminary 
Gaia DR1
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I. INTRODUCTION

II. THEORETICAL BACKGROUND

A. Boltzmann Equation and 1D Dynamics

In a dissipationless self-gravitating system, such as a collection of stars, particles obey Liouville’s theorem. In
particular, for the stellar population labelled with the upper case roman index A, the phase space distribution
function fA(x,v) obeys the collisionless Boltzmann equation

d fA
d t

= @tfA + @
x

fA · v � @
v

fA · @
x

� = 0 (1)

where � is the total gravitational potential summed over all populations and where we have dropped the explicit
dependence of fA on phase space coordinates. In principle this equation can give all the information required to
measure the gravitational potential, however because fA is six-dimensional this is not numerically tractable. Instead
we can understand the bulk behavior of the system by taking moments of the phase space distribution,

⌫A =

Z
d3vfA (2)

v̄A,i =
1

⌫(x)

Z
d3v vi fA (3)

�2
A,ij =

1

⌫(x)

Z
d3v vivj fA � v̄iv̄j (4)

such that ⌫A represents the number density, v̄i,A represents the mean velocity, and �2
A,ij represents the velocity

dispersion tensor for stars in population A. Note that lower case roman letters here denote spatial indices. Equipped
with these definitions and assuming dynamic equilibrium (i.e. time derivatives vanish) we can integrate moments of
the Boltzmann equation in cylindrical coordinates. The first non-vanishing moment is the first, the z-component of
which takes the form

1

r⌫A
@r(r⌫A�

2
A,rz) +

1

r⌫A
@�(⌫A�

2
A,�z) +

1

⌫A
@z(⌫A�

2
A,zz) + @z� = 0 (5)

assuming an axisymmetric disk. Note that relaxing the assumption of axisymmetry would be akin to relaxing the
assumption that we can drop time derivatives, since this would imply the existence of time varying features as the
disk rotates.

�2
A

⌫A
@z⌫A + @z� = 0 (6)

The first term of Eq. (6), which is commonly referred to as the tilt term, can be ignored when dealing with dynamics
near the disk since �2

rz is antisymmetric about z = 0, assuming reflection symmetry in the distribution function fA.
However, this term can be important at the ⇠10% level starting at z & 1 kpc [KS: add more discussion later]. We
further assume that each stellar population is gravitationally well-thermalized near the galactic plane, implying that
�2
A,zz is constant (i.e. that Maxwell-Boltzmann velocity statistics for an isothermal population are satisfied.) With

these simplifying assumptions, the solution to the vertical Euler equation in the solar neighborhood is

⌫A(z) = ⌫A(0) e
��(z)/�2

A,zz , (7)

where we have assumed �(z = 0) = 0.

⌫A(z) = ⌫A(0) e
��(z)/�2

A , (8)

To connect the gravitational potential to the mass density of the system, we turn to the Poisson equation for
standard Newtonian gravity,

r2� = @2
z�+

1

r
@r(r@r�) = 4⇡G⇢ (9)
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To connect the gravitational potential to the mass density of the system, we turn to the Poisson equation for

standard Newtonian gravity,

r2� = @2
z�+
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r
@r(r@r�) = 4⇡G⇢ (7)

@2
z� = 4⇡G⇢e↵ (8)

where ⇢ is the total mass density of the system. Again, since we are assuming axisymmetry, orbits are assumed to
be circular so we can relate the second term to measured quantities as

1

r
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c = 2(B2 �A2) (9)

Single-population case:
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where ⇢ is the total mass density of the system. Again, since we are assuming axisymmetry, orbits are assumed to be
circular so we can relate the second term to measured quantities as
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where vc is the circular orbital velocity, and A and B are Oort’s constants, defined as
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There are a wide variety of measurements of these constants, but one of the most recent measurements comes from
Gaia DR1. We will adopt these values of A = 15.3± 0.4 km/s/kpc and B = �11.9± 0.4 km/s/kpc, which means that
the radial contribution to the e↵ective vertical density,

⇢e↵(z) = ⇢(z)� B2 �A2

2⇡G
(12)

is (3.4±0.6)⇥10�3 M�/pc3, naively assuming uncorrelated errors. This is roughly one third of previous measurements
of the local dark matter density and can be subtracted o↵ at the end of the analysis.

Combining the Euler and Poisson equations (again, assuming reflection symmetry) yields the integral equation

⌫A(z)

⌫A(0)
= exp

 
�
X

B

4⇡G

�2
B,zz

Z z

0
dz0
Z z0

0
dz00⇢B(z

00)

!
(13)

In the limiting case where there is only one population of stars, the solution to this equation is

⇢(z) = ⇢(0) sech2
⇣p

2⇡G⇢(0) z/�
⌘

(14)

where for notational convenience � now denotes the vertical velocity dispersion. Also, we are assuming that the mass
density ⇢ is proportional to the number density ⌫, i.e. that while there may be some scatter in the mean mass of
tracer stars, this does not have any dependence on z.

The ansatz of Eq. (13) will be the starting point for our iterative solver, which has two steps per iteration. On the
nth iteration, the first step is to compute

�(n)(z) = 4⇡G
X

A

Z z

0
dz0
Z z0

0
dz00⇢(n)A (z00) (15)

and then the solver takes the next step by computing the updated density profile for each population,

⇢(n+1)
A (z) = ⇢A(0) e

��(n)(z)/�2
A . (16)

The intuitive e↵ect of adding more gravitating populations (and thus more mass density) will be to compress the
naive single-population density profile where more mass is concentrated at the galactic midplane.

Once we are equipped with a converged gravitational potential for the combined components in the galactic disk,
we can predict the vertical density profile for a given tracer population. Since we are focusing on vertical motion,
we assume a form for the distribution function where the motion in the z direction is separable from the other
components, which is morally equivalent to dropping the tilt, azimuthal, and rotation curve terms as we have done
above. Then for this z component of the distribution function, the Boltzmann equation reads

vz@zfA � @z�@vzfA = 0 (17)

where again we are dropping time derivatives. Any function of the form F(v2z/2 + �(z)) will satisfy the above
di↵erential equation. We also note that

Z
dvzfA(z, vz) = ⌫A(z) ) fA(z, vz) = ⌫A(z)fA,z(vz) (18)

where fA,z(vz) is the velocity distribution function at some fixed height z, normalized to unity. [KS: insert what this
is for the single population case, can be found in one of the exercises in B&T] With the above two facts in mind, we
can write

⌫A(z) =

Z
dvzfA(z, vz) =

Z
dvzfA

⇣
0,
p
v2z + 2�(z)

⌘
= ⌫A(0)

Z
dvzfA,0
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v2z + 2�(z)

⌘
. (19)

Therefore, once we know the gravitational potential, if we have a measurement of the velocity distribution function
for tracers at the midplane z = 0, we can solve for the shape of the tracer profile.
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with these definitions and assuming dynamic equilibrium (i.e. time derivatives vanish) we can integrate moments of
the Boltzmann equation in cylindrical coordinates. The first non-vanishing moment is the first, the z-component of
which takes the form

1

r⌫A
@r(r⌫A�

2
A,rz) +

1

r⌫A
@�(⌫A�

2
A,�z) +

1

⌫A
@z(⌫A�

2
A,zz) + @z� = 0 (5)

assuming an axisymmetric disk. Note that relaxing the assumption of axisymmetry would be akin to relaxing the
assumption that we can drop time derivatives, since this would imply the existence of time varying features as the
disk rotates.

The first term of Eq. (5), which is commonly referred to as the tilt term, can be ignored when dealing with dynamics
near the disk since �2

rz is antisymmetric about z = 0, assuming reflection symmetry in the distribution function fA.
However, this term can be important at the ⇠10% level starting at z & 1 kpc [KS: add more discussion later]. We
further assume that each stellar population is gravitationally well-thermalized near the galactic plane, implying that
�2
A,zz is constant (i.e. that Maxwell-Boltzmann velocity statistics for an isothermal population are satisfied.) With

these simplifying assumptions, the solution to the vertical Euler equation in the solar neighborhood is

⌫A(z) = ⌫A(0) e
��(z)/�2

A,zz , (6)

where we have assumed �(z = 0) = 0.
To connect the gravitational potential to the mass density of the system, we turn to the Poisson equation for

standard Newtonian gravity,

r2� = @2
z�+

1

r
@r(r@r�) = 4⇡G⇢ (7)

@2
z� = 4⇡G⇢e↵ (8)

where ⇢ is the total mass density of the system. Again, since we are assuming axisymmetry, orbits are assumed to
be circular so we can relate the second term to measured quantities as

1

r
@2
r (r@r�) =

1

r
@2
rv

2
c = 2(B2 �A2) (9)
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There are a wide variety of measurements of these constants, but one of the most recent measurements comes from
Gaia DR1. We will adopt these values of A = 15.3± 0.4 km/s/kpc and B = �11.9± 0.4 km/s/kpc, which means that
the radial contribution to the e↵ective vertical density,

⇢e↵(z) = ⇢(z)� B2 �A2

2⇡G
(10)

is (3.4±0.6)⇥10�3 M�/pc3, naively assuming uncorrelated errors. This is roughly one third of previous measurements
of the local dark matter density and can be subtracted o↵ at the end of the analysis.

Combining the Euler and Poisson equations (again, assuming reflection symmetry) yields the integral equation

⌫A(z)

⌫A(0)
= exp

 
�
X

B

4⇡G

�2
B,zz

Z z

0
dz0
Z z0

0
dz00⇢B(z

00)

!
(11)

In the limiting case where there is only one population of stars, the solution to this equation is

⇢(z) = ⇢(0) sech2
⇣p

2⇡G⇢(0) z/�
⌘

(12)

where for notational convenience � now denotes the vertical velocity dispersion. Also, we are assuming that the mass
density ⇢ is proportional to the number density ⌫, i.e. that while there may be some scatter in the mean mass of
tracer stars, this does not have any dependence on z.

The ansatz of Eq. (12) will be the starting point for our iterative solver, which has two steps per iteration. On the
nth iteration, the first step is to compute

�(n)(z) = 4⇡G
X

A

Z z

0
dz0
Z z0

0
dz00⇢(n)A (z00) (13)

and then the solver takes the next step by computing the updated density profile for each population,

⇢(n+1)
A (z) = ⇢A(0) e

��(n)(z)/�2
A . (14)

The intuitive e↵ect of adding more gravitating populations (and thus more mass density) will be to compress the
naive single-population density profile where more mass is concentrated at the galactic midplane.

⇢DD(z) =
⌃

4h
sech2 (z/2h) (15)

Once we are equipped with a converged gravitational potential for the combined components in the galactic disk,
we can predict the vertical density profile for a given tracer population. Since we are focusing on vertical motion,
we assume a form for the distribution function where the motion in the z direction is separable from the other
components, which is morally equivalent to dropping the tilt, azimuthal, and rotation curve terms as we have done
above. Then for this z component of the distribution function, the Boltzmann equation reads

vz@zfA � @z�@vzfA = 0 (16)

where again we are dropping time derivatives. Any function of the form F(v2z/2 + �(z)) will satisfy the above
di↵erential equation. We also note that

Z
dvzfA(z, vz) = ⌫A(z) ) fA(z, vz) = ⌫A(z)fA,z(vz) (17)

where fA,z(vz) is the velocity distribution function at some fixed height z, normalized to unity. [KS: insert what this
is for the single population case, can be found in one of the exercises in B&T] With the above two facts in mind, we
can write

⌫A(z) =

Z
dvzfA(z, vz) =

Z
dvzfA

⇣
0,
p

v2z + 2�(z)
⌘
= ⌫A(0)

Z
dvzfA,0

⇣p
v2z + 2�(z)

⌘
. (18)

Therefore, once we know the gravitational potential, if we have a measurement of the velocity distribution function
for tracers at the midplane z = 0, we can solve for the shape of the tracer profile.



WHAT’S DIFFERENT ABOUT OUR ANALYSIS?

➤ Full MCMC exploration of parameter space, including 
“nuisance” parameters of baryonic physics, merger history, 
height of the sun, etc. 

➤ Testing whether dark disk can be absorbed into uncertainties 
in e.g. gas parameters and being as conservative as possible 
about possible degeneracies 

➤ Using Gaia DR1 data A-G stars (20x more stars than previous 
analyses), including selection function to account for relative 
statistical completeness (Bovy, 2017)



The “zero-parameter” fit

Preliminary 
Gaia DR1



Marginalized Posteriors

Preliminary 
Gaia DR1

➤ Marginalized over 
uncertainties in 
baryonic mass 
model, time 
variations in profile 
shape, height of the 
sun, normalization 

➤ Dark disk, if present 
has to be small, 
quantifying this 
statement is still in 
prep (MCMCs are 
running)



Best fit for a nontrivial dark disk

Preliminary 
Gaia DR1



DARK DISK IMPLICATIONS (REVISITED)
➤ Enhanced direct detection signal Σ ~40 M⦿/pc2 (very ruled out) 

➤ Co-rotation of Andromeda satellites Σ ~10 M⦿/pc2 , h~50 pc 
(ruled out at σ ~3.5, Δ ln 𝓛 ~12) 

➤ Periodic disruption of comet trajectories causing mass 
extinction events Σ ~10 M⦿/pc2 , h~10 pc (ruled out,                
Δ ln 𝓛~35) 

➤  Collapsed dark matter objects can account for the point-like 
nature of the inner galaxy GeV excess Σ ~10 M⦿/pc2 , h~10 pc 
(ruled out, Δ ln 𝓛~35)  

➤ Dynamical influence on local stars in the Milky Way (non-
equilibrium method) Σ ~14 M⦿/pc2 , h~10 pc (very ruled out,   
Δ ln 𝓛 ~60)

Preliminary



SUMMARY
➤ Dark disks arise in models of dark 

matter where there are substantial 
dissipations 

➤ They can have interesting observable 
implications 

➤ Gaia is sensitive to the presence of 
dark disks via how stars trace the 
potential 

➤ Given Gaia DR1, any dark disk that 
exists would have to be too small to 
have the observable consequences 
claimed in the literature 

➤ Plenty more ideas for using Gaia to 
constrain properties of dark matter 
and more!


