Capture and Decay of Electroweak WIM Ponium

Patrick Fitzpatrick

based on JCAP 1702 (2017) 005 with

Pouya Asadi, Matthew Baumgart
Emmett Krupczak, Tracy Slatyer

Rutgers MIT
WIMPs

- WIMPs exchange ladder of electroweak gauge bosons

\[\ldots \]

- in NR limit \((v \sim 10^{-3})\) gives rise to non-local, instantaneous potential

- leads to Sommerfeld enhancement in DM annihilations:

\[\sigma v = \Gamma |\psi (0)|^2 \]

- WIMP spectrum possesses bound states when WIMP mass sufficiently large relative to mass of electroweak gauge bosons \(\rightarrow\) WIMPorium

\[\ldots \]

- alternative annihilation channel for DM...significant effect on radiative signals?
wino

- SU(2)$_L$ triplet Majorana fermion χ_a, zero hypercharge, mass M_χ
 \[\mathcal{L} = i\chi_a^\dagger (\bar{\sigma}^\mu \partial_\mu \delta^{ac} + ig\bar{\sigma}^\mu W_\mu^{tb} T_{ac}^b) \chi^c - \frac{1}{2} M_\chi (\chi^a \chi^a + h.c.) \]

- in mass eigenbasis: \(\{\chi^1, \chi^2, \chi^3\} \to \{\chi^0, \chi^\pm\} \)

- mass splitting: \(\delta M \equiv M_{\chi^\pm} - M_{\chi^0} = 165 \text{ MeV} \)

- interactions with electroweak gauge bosons:

- pair states, starting with a pair of neutral winos:
Schrödinger eqtn.

- wino pair states \(\Psi = \begin{pmatrix} \psi_N (\equiv \chi^0 \chi^0) \\ \psi_C (\equiv \chi^+ \chi^-) \end{pmatrix} \)

- in NR limit evolve in the Schrödinger eqtn:
 \[
 i \partial_t \Psi = H^0 \Psi = \left[-\frac{\nabla^2}{4M_\chi} - \frac{\nabla^2}{M_\chi} + V(r) \right] \Psi
 \]

- under the potential:
 \[
 V_{L+S \text{ even}}(r) = \begin{pmatrix} 0 & -\sqrt{2\alpha_W} e^{-m \frac{r}{r}} \\ -\sqrt{2\alpha_W} e^{-m \frac{r}{r}} & 2\delta M - \frac{\alpha}{r} - \alpha_W c^2_W e^{-m \frac{r}{r}} \end{pmatrix} \quad V_{L+S \text{ odd}}(r) = \begin{pmatrix} 0 & 0 \\ 0 & 2\delta M - \frac{\alpha}{r} - \alpha_W c^2_W e^{-m \frac{r}{r}} \end{pmatrix}
 \]

- initial (neutral) positive-energy scattering state \(\Psi_i \quad E_{CM} = \frac{M_X v^2_{\text{rel}}}{4} \quad V_{L+S \text{ even}} \)
 \[
 \int d^3 r \Psi^\dagger_{i,p} (r) \Psi_{i,p'} (r) = \delta^3 \left(p - p' \right)
 \]
 \[
 H_{L+S \text{ even}}^0 \Psi_i = \frac{M_X v^2_{\text{rel}}}{4} \Psi_i
 \]

 ...radiative transition \(\Delta L = \pm 1 \) to

- purely chargino negative-energy bound state \(\Psi_f \quad E_n \lesssim O \left(\alpha_W^2 M_X \right) \quad V_{L+S \text{ odd}} \)
 \[
 \int d^3 r |\Psi_f (r)|^2 = 1
 \]
 \[
 H_{L+S \text{ odd}}^0 \Psi_f [^{2S+1}L_J] = E_n \Psi_f [^{2S+1}L_J]
 \]
SU(2)\textsubscript{L}-symmetric limit

- high-mass limit in which SU(2)\textsubscript{L} symmetry approximately unbroken:
 \[M_W, M_Z \ll M_\chi \quad \delta M \to 0 \]
- Coulombic limit:
 \[V (r) \to -\frac{\alpha_W}{r} \bar{V} \]
- diagonalize the Schrödinger eqtn:
 \[
 -\frac{1}{2\mu} \nabla^2 \Psi - \frac{\alpha_W}{r} \bar{V} \Psi = \begin{cases}
 \frac{p^2}{2\mu} \Psi \\
 E_n \Psi
 \end{cases}
 \]
 \[\Psi (r) = \sum_i \eta_i \phi_i (r) \quad \bar{V} \eta_i = \lambda_i \eta_i \]
- Wino:
 \[
 V_{L+S}^{\text{even}} (r) = -\frac{\alpha_W}{r} \begin{pmatrix} 0 & \sqrt{2} \\
 \sqrt{2} & 1 \end{pmatrix}
 \]
 \[\lambda_1 = 2 \to E_n = -\frac{M_\chi (2\alpha_W)^2}{4n^2} \]
 \[\lambda_2 = -1 \]
 \[
 V_{L+S}^{\text{odd}} (r) = -\frac{\alpha_W}{r} \begin{pmatrix} 0 & 0 \\
 0 & 1 \end{pmatrix}
 \]
 \[\lambda = 1 \to E_n = -\frac{M_\chi \alpha_W^2}{4n^2} \]
bound state spectrum

blue, red, green: s, p, d wave. solid, dashed, dotted ranking n from lowest

\[
\begin{align*}
\text{Spin-Singlet Spectrum} & & \text{Spin-Triplet Spectrum} \\
\left| \frac{E_n}{M_{\chi}} \right| = \frac{1}{144} & & 6D \\
\left| \frac{E_n}{M_{\chi}} \right| = \frac{1}{100} & & 5P \\
\left| \frac{E_n}{M_{\chi}} \right| = \frac{1}{64} & & 4P \\
\left| \frac{E_n}{M_{\chi}} \right| = \frac{1}{36} & & 3P 6D \\
\left| \frac{E_n}{M_{\chi}} \right| = \frac{1}{32} & & 5D \\
\left| \frac{E_n}{M_{\chi}} \right| = \frac{1}{16} & & 4S 2P 4D \\
\left| \frac{E_n}{M_{\chi}} \right| = \frac{1}{9} & & 3S 3D \\
\left| \frac{E_n}{M_{\chi}} \right| = \frac{1}{4} & & 2S \\
\left| \frac{E_n}{M_{\chi}} \right| = 1 & & 1S
\end{align*}
\]

\[E_n = \frac{(2\alpha_W)^2 M_\chi}{4n^2}\] even L+S

\[E_n = \frac{\alpha_W^2 M_\chi}{4n^2}\] odd L+S

high-mass limit
WIM Ponium formation

- initial population of free neutralinos, bound states form via radiative capture

\[
\begin{align*}
\left(\sigma v_{\text{rel}} \right)_{s=1, l=1 \rightarrow 3S_1, n=1} & \propto \frac{\alpha \alpha_W^2}{M_\chi^2 v_{\text{rel}}} e^{-4n\lambda_i/\lambda_f} = \frac{\alpha \alpha_W^2}{M_\chi^2 v_{\text{rel}}} e^{-8} \\
\left(\sigma v_{\text{rel}} \right)_{s=0, l=0 \rightarrow 1P_1, n=2, \sum_m} & \propto \frac{\alpha \alpha_W^2}{M_\chi^2 v_{\text{rel}}} e^{-16}
\end{align*}
\]

- capture into s=1 (spin-triplet) l=0 n=1 bound state (arising from p-wave part of initial state) dominates capture to 2p states — due mostly to suppression $e^{-4n\lambda_i/\lambda_f} = e^{-8n}$

- bound states subsequently decay to lower-energy states or annihilate to SM particles.

- note: detecting photon lines from capture and/or transitions extremely challenging: NFW DM profile $\rho (8.5 \text{kpc}) = 0.4 \text{GeV/cm}^3$

\[
\sigma_{\text{cap}} = 5 \times 10^{-29} \text{cm}^3/\text{s} \quad \rightarrow \quad \mathcal{O} \left(10^{-3} \right) \text{photons/m}^2/\text{yr}
\]
capture vs. direct annihilation

- leading-order s-wave annihilation into all channels given by diagrams:

\[
\sigma \propto \alpha_W^2 \frac{\alpha W}{M_X^2} \frac{1}{v_{rel}}
\]

\[
\frac{(\sigma v_{rel})_{da}}{(\sigma v_{rel})_{cap}} \propto \frac{\alpha}{\alpha_W} e^{-4\lambda_i/\lambda_f} = \frac{\alpha}{\alpha_W} e^{-8n}
\]

- direct annihilation dominates the radiative capture for the wino, due to factor \(e^{-8n}\)
- in contrast to positronium \(\propto e^{-4n}\)

\textit{dark orange}: tree-level inclusive annihilation \(\rightarrow WW, \gamma Z, \gamma \gamma\).
\textit{blue}: p-wave \(\rightarrow ^3S_1 + \gamma\), (lowest) n=1.
\textit{purple}: d-wave \(\rightarrow ^1P_1 + \gamma\), (n = 2).
\textit{maroon}: s-wave \(\rightarrow ^1P_1 + \gamma\), n = 2.
conclusions

• due to spin statistics, states with odd vs. even $L+S$ experience different effective potentials and form distinct towers of bound states \rightarrow bound spectrum, unsuppressed decay channels different from hydrogen-like atoms.

• wino bound state capture rate subdominant to direct annihilation \rightarrow previous calculations of detectability of e.g. high-energy gamma-ray lines from wino DM should not require significant modification.

• detection of low-energy photon lines from radiative capture and transitions between bound states seem very challenging for wino.

• factors which suppress wino-onium cross section not generic \rightarrow depend sensitively on rep. of DM under the gauge group, and relative masses of DM and force carriers \rightarrow formation of bound states cannot be safely ignored in models with non-trivial dark sectors.

\rightarrowSee e.g. Cirelli et al JCAP 1705 (2017) 036 : DM charged under dark U(1) \rightarrow formation and decay of DM bound states have significant effect on radiative signals in indirect detection.

\rightarrowSee e.g. Mitridate et al. 2017: DM fermionic 5plet of SU(2) with zero hypercharge. bound states reduce the DM thermal abundance by about 30%, increasing the DM mass that reproduces the cosmological abundance to about 11.5TeV. significant bound-state corrections to DM indirect detection, characteristic spectrum of mono-chromatic lines around $E \approx (10 \ 80)$ GeV, with rates of experimental interest.
WIMPonium formation, transitions, annihilation

- initial population of free neutralinos, bound states form via radiative capture...subsequently decay to lower-energy states or annihilate to SM particles

- continuum-bound and bound-bound transitions in time-ordered perturbation theory.

\[
H = H^0 + V_{\text{rad}}.
\]

\[
V_{\text{rad.}} = \left(- \sum_n \frac{e_n}{M_\chi} A(x_n) \cdot p_n + \sum_n \frac{e_n^2}{2m_n} A(x_n)^2 \right) \mathbb{P}_{\text{CC}}
+ \left(i \sqrt{2} e \alpha_W A(0) \cdot \hat{r} e^{-m_{\text{rr}} r} \right) \mathbb{P}_{\text{NC}}
\]

\[
S_{i, f \gamma} = 2\pi i \delta[M_\chi v^2/4 - E_n - k - P_{\text{BS}}/(4M_\chi)] \left(\sum_n \frac{e_n}{M_\chi} \langle \Psi_f [2S+1 L_J] \gamma(k) | A(x_n) \cdot p_n | \psi_{i,C} \rangle \right)
\]

\[
(d\sigma)_{\nu_{\text{rel}}} / d\Gamma = (2\pi)^2 \mu_f k |M_{i, f \gamma}|^2 d\Omega_k
\]

where \(\mu_f = k E_{\text{BS}}/(k + E_{\text{BS}}) \approx k \)

\[
k = -E_n + M_\chi v_{\text{rel}}^2/4 \quad \text{for capture}
\]

\[
k = E_{n1} - E_{n2} \quad \text{for decay}
\]
annihilation from bound state

- bound states also decay through annihilation to SM final states.

\[|\psi\rangle = \sqrt{\frac{1}{2\mu}} \int \frac{d^3p}{(2\pi)^3} \psi(p)|p, -p\rangle \quad \text{(distinguishable particles)} \]

\[\sqrt{\frac{1}{4\mu}} \int \frac{d^3p}{(2\pi)^3} \psi(p)|p, -p\rangle \quad \text{(identical particles)}, \]

\[\mathcal{M}(B \to f) = \sqrt{\frac{1}{2\mu}} \int \frac{d^3p}{(2\pi)^3} \left[\frac{1}{\sqrt{2}} \psi_N(p)\mathcal{M}(\chi^0(p)\chi^0(-p) \to f) + \psi_C(p)\mathcal{M}(\chi^+(p)\chi^-(p) \to f) \right] \]

\[\Gamma = \frac{1}{2M_B} \int d\Pi_n |\mathcal{M}(B \to f)|^2 \]
WIMPorium decays

- decays for lowest-energy bound states:
 - blue \rightarrow 1-3s; yellow \rightarrow 3d; red \rightarrow W+W-

- SU(2)-symmetric limit:
 - $\Gamma_{\text{dec}} \propto \alpha \alpha_W^4 M_\chi$ dominate $L > 0$
 - $\Gamma_{\text{annih}} \propto \alpha_W^{5+2L} M_\chi$

- dominant capture into spin-triplet 1s

- spin-singlet 2p: annihilation decay rate suppressed relative to ED transitions to lower s and d.
detectability

- photons radiated upon capture/transitions could allow study of the QM numbers of DM...constitute a detectable signal? assuming:

 NFW DM profile \(\rho (8.5\text{kpc}) = 0.4\text{GeV/cm}^3 \quad R_s = 20\text{kpc} \)

 \(\sigma_{\text{cap}} = 5 \times 10^{-29}\text{cm}^3/\text{s} \)

 \(\mathcal{O} (10^{-3}) \text{photons/m}^2/\text{yr} \quad \text{at Earth from the Milky Way halo} \)

- from region within 1 degree of Galactic center, rate is instead:

 \(\text{few} \times 10^{-5} \text{photons/m}^2/\text{yr} \)

- rate is prohibitively small for reasonable space-based telescope.

- ground-based gamma-ray telescope with effective areas \(\sim 10^{5-6}\text{m}^2 \)

- however, current and near-future ground based telescopes have low-energy thresholds \(10 - 20\text{GeV} \)

- need to be lowered by an order of magnitude to observe capture and transition photons from DM \(\mathcal{O} (10) \text{TeV} \rightarrow E_n \sim 1\text{GeV} \quad \text{deepest bound states} \)