The LHC Dark Matter Working Group

Antonio Boveia (Ohio State University)

What is this talk about?

This is an advertisement for the activities of the LHC Dark Matter Working Group (WG) We'd like more of the community to get involved

What is this talk not about?

- It is not about the newest collider results—see the other talks throughout this week

Why the LHC Dark Matter Working Group?

Dark matter is a significant and growing focus of the collider experiments

- e.g. an expanding body of theory & phenomenology work targeting DM@LHC
- e.g. many collider DM workshops, many conference talks
- e.g. so many papers on the HEP arXiv

The collider experiments want our work to be useful to the broader search for particle dark matter, but we need your help!

- What signals should we look for? (Our searches are critically sensitive to the models we assume!)
- How does our work fit into the other searches being done, and where should we focus our effort to best complement the other approaches?

What is the LHC Dark Matter Working Group?

A mechanism

- for theorists to discuss results with LHC
 experiments and LHC experiments to discuss
 with each other
- to share work on search targets and improved tools, and to pay attention to outside feedback on LHC results

Search targets are especially important: how can we minimize the chances that we miss (or do not record) a signal?

Made up of many from ATLAS, CMS, and theory

- Participation from experimentalists actually working on the DM searches
- Open to all theorists and quite a few are active

LHC DM WG: WG on Dark Matter Searches at the LHC

LHC working groups LHC publications Events

CERN

About

LPCC: LHC Physics Centre at

Newslette

To subscribe to the general WG mailing list, used to distribute announcements about meetings and available documents, go to http://simba3.web.cern.ch/simba3/SelfSubscription.aspx? groupName=lhc-dmwg

A second mailing list is used for more technical exchanges related to the ongoing work of the WG. To subscribe, go to http://simba3.web.cern.ch/simba3/SelfSubscription.aspx? groupName=lhc-dmwg-contributors

The LHC Dark Matter Working Group (LHC DM WG) brings together theorists and experimentalists to define guidelines and recommendations for the benchmark models, interpretation, and characterisation necessary for broad and systematic searches for dark matter at the LHC. As examples, the group develops and promotes well-defined signal models, specifying the assumptions behind them and describing the conditions under which they should be used. It works to improve the set of tools available to the experiments, such as higher- precision calculations of the backgrounds. It assists theorists with understanding and making use of LHC results.

The LHC DM WG develops and maintains close connections with theorists and other experimental particle DM searches (e.g. Direct and Indirect Detection experiments) in order help verify and constrain particle physics models of astrophysical excesses, to understand how collider searches and non-collider experiments complement one another, and to help build a comprehensive understanding of viable dark matter models.

LHC WORKING GROUPS

- Dark Matter WG WG Meetings WG documents
- Electroweak WG WG Documents WG meetings
- Forward Physics WG WG TWIKI PAGE WG documents WG meetings
- Heavy Flavour WG WG Documents WG Meetings
- MB & UE WG WG meetings WG documents
- Machine Learning WG WG meetings iml web page
- Top WG WG meetings WG documents WG plots and twiki

Conveners:

- ATLAS: C. Doglioni and A. Boveia
- CMS: K. Hahn and S.Lowette
- TH: U. Haisch and T. Tait
- LPCC: M. Mangano

CERN-LPCC-2016-001

How does it work?

The DM WG works on focused efforts: selected topics leading to CERN LPCC / arXiv write-ups

- suggestions for topics can come at any time
- occasional meetings with short pitches for potential topics
- develop topics in open meetings and smaller groups of interested contributors
- conclude and write up, with circulation and review
 by the full group (and sometimes outside experts)
- meetings and drafts announced at <u>lhc-</u>
 <u>dmwg@cern.ch</u> (sign up at <u>egroups.cern.ch</u>)

At the same time, a discussion forum for any topic: lhc-dmwg-contributors@cern.ch

- high volume list for day-to-day discussions in detail
- everyone welcome to raise questions / issues to
 the attention of the group

Recommendations on presenting LHC searches for missing transverse energy signals using simplified *s*-channel models

0107			CERN-LPCC-2017	-01		
arxiv:100.0.041.001 [nep-ex] 14 Mar	hep-ex] 17 Mar 2017	lay 2017	 Precise predictions for V+jets dark matter ba J. M. Lindert¹, S. Pozzorini², R. Boughezal³, J. M. Campbell⁴ S. Dittmaier⁶, A. Gehrmann-De Ridder^{2,7}, T. Gehrmann², N. Gle S. Kallweit⁸, P. Maierhöfer⁶, M. L. Mangano⁸, T.A. Morgan¹ F. Petriello^{3,10}, G. P. Salam^{*8}, M. Schönherr², and C. Wi ¹Institute for Particle Physics Phenomenology, Department of Physics, Univer Durham, DH1 3LE, UK ²Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Züric ³High Energy Physics Division, Argonne National Laboratory, Argonne, IL ⁶Fermilab, P.O.Box 500, Batavia, IL 60510, USA ⁵Universität Würzburg, Institut für Theoretische Physik und Astrophysik, 97074 W ⁶Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, 79104 Freibu ⁷Institute for Theoretical Physics, ETH, CH-8093 Zürich, Switzeri ⁶Ineoretical Physics Department, CERN, CH-1211 Geneva 23, Switzeri ⁹Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen 	CERN-TH-2017-102 CERN-LPCC-2017-02 FERMILAB-PUB-17-1: IPPP/17/38 ZU-TH 12/17 or V+jets dark matter backgrounds ² , R. Boughezal ³ , J. M. Campbell ⁴ , A. Denner ⁵ , be Ridder ^{2,7} , T. Gehrmann ² , N. Glover ¹ , A. Huss ⁷ , ⁶ , M. L. Mangano ⁸ , T.A. Morgan ¹ , A. Mück ⁹ , balam ^{*8} , M. Schönherr ² , and C. Williams ¹¹ nomenology, Department of Physics, University of Durham, Durham, DH1 3LE, UK ich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland Argone National Laboratory, Argonne, IL 60439, USA ² O.Boz 500, Batavia, IL 60510, USA heoretische Physik und Astrophysik, 97074 Würzburg, Germany eiburg, Physikalisches Institut, 79104 Freiburg, Germany eiburg, Physikalisches Institut, 79104 Freiburg, Germany eiburg, Physikalisches Institut, 79104 Freiburg, Germany eiburg, CH-1211 Geneva 23, Switzerland artment, CERN, CH-1211 Geneva 23, Switzerland chenphysik und Kosmologie, RWTH Aachen University,		
	.05703v2 [p-ph] 12 N	D-52056 Aachen, Germany ¹⁰ Department of Physics & Astronomy, Northwestern University, Evanston, J ¹¹ Department of Physics, University at Buffalo, The State University of New York, Abstract	IL 60208, USA , Buffalo 14260	USA	
_	Xiv:1703	64v1 [he	High-energy jets recoiling against missing transverse energy (MET) probes of dark matter at the LHC. Searches based on large MET signat precise control of the $Z(\nu\bar{\nu})$ + jet background in the signal region. This ca by taking accurate data in control regions dominated by $Z(\ell^+\ell^-)$ + jet, W γ + jet production, and extrapolating to the $Z(\nu\bar{\nu})$ + jet background by me theoretical predictions. In this context, recent advances in perturbativ	are powerful ures require a an be achieved $T(\ell\nu)$ + jet and eans of precise re calculations		
	ar	arXiv:1705.046	open the door to significant sensitivity improvements in dark matter see spirit, we present a combination of state-of-the-art calculations for all rel processes, including throughout NNLO QCD corrections and NLO electr tions supplemented by Sudakov logarithms at two loops. Predictions a are provided together with detailed recommendations for their usage in analyses based on the reweighting of Monte Carlo samples. Particula devoted to the estimate of theoretical uncertainties in the framework o searches, where subtle aspects such as correlations across different V + play a key role. The anticipated theoretical uncertainty in the $Z(\nu \bar{\nu})$ +je is at the few percent level up to the TeV range.	rches. In this evant V + jets oweak correc- t parton level experimental r attention is f dark matter - jet processes et background		

5

What are some examples of what the WG has done?

Summer 2015	[Dark Matter Forum] Provide a common set of benchmark models for ATLAS and CMS early Run-2 searches <u>arXiv:1507.00966</u> (160pp!)		
Winter 2015	Guidelines for comparisons with astroparticle dark matter searches <u>arXiv:</u> <u>1603.04156</u>		
Winter 2016	Recommendations for mediator searches and comparisons between invisible and visible collider searches <u>arXiv:1703.05703</u>		
Spring 2017	Arrive at a joint estimation of theory uncertainties for precision DM searches at colliders (e.g. mono-jet) <u>arXiv:1705.04664</u>		
Spring 2017 (ongoing)	Further develop extended scalar sector and colored scalar benchmarks		

Early Run 2 Benchmarks

Report of the ATLAS+CMS Dark Matter Forum <u>arXiv:</u> 1507.00966

Focused on our searches for Missing Energy + jet/photon/b quark(s)/top quark(s)/W/Z/higgs/etc...

Are these searches looking for realistic signals? (EFT validity)

Provide a basis set of simplified models that complement SUSY searches

General models with SM + fermionic WIMP + mediating particle

- Z' or scalar mediators
- Colored scalar mediators
- Specific mediating processes (e.g. 2HDM-like) for Missing Energy + Higgs

Collider results: mass-mass plots

arXiv:1603.04156

How to display interpretation of collider search using simplified models

- 1. How to convey the results fairly
- 2. Issues that should be considered
- 3. Comparison with the relic density obtained in the absence of further higher-energy physics

Comparison to non-collider results

How to display collider searches alongside DD/ID

- 1. Mapping from the simplified models to DD/ID variables (correspondence M_{Med} , M_{DM} , g_{q} , $g_{DM} \Leftrightarrow \sigma$)
- 2. Spells out well-defined translation formulas, reference relic abundances for benchmarks
- Reference/pedagogical discussion of the strengths and limitations of collider searches and how they complement other approaches

arXiv:1603.04156

Comparison to non-collider results

arXiv:1603.04156

- (correspondence N
- 2. Spells out well-det abundances for be
- 3. Reference/pedage limitations of colli other approaches

 $m_{\rm DM}$ [GeV]

arXiv:1703.05703

Are we looking for all the signatures of these models? e.g. $Z' \rightarrow WIMPs$ or $Z' \rightarrow jet+jet$

Visible decays are an important strength of colliders (Think MET+jet vs specific SUSY cascade decay)

How to improve missing-energy searches?

Ambitious program of LHC mono-X searches up to HL-LHC needs:

- Very precise (~1%) uncertainties on theoretical modelling of W/Z+jets processes
- Oetailed understanding correlations between background uncertainty sources

Precise predictions for V+jets dark matter backgrounds

arXiv:1705.04664

Combined state-of-the-art calculations for all relevant V + jets processes to mono-jet searches, including **NNLO QCD corrections** and **NLO electroweak corrections** supplemented by **Sudakov logarithms at two loops**

Theoretical uncertainty on $Z(\nu\nu)$ + jet background at the few percent level up to the TeV range.

All NLO uncertainties combined in quadrature (NLO), except for PDFs

[NNLO: scale uncertainty only]

What will the group do in the future?

Periodic calls for new topics from the community —another call soon (subscribe to <u>lhc-</u> <u>dmwg@cern.ch</u> at <u>https://e-groups.cern.ch</u>)

Attention remains on

- Developing dialogue with theory and noncollider communities
- Motivating searches that are not being done
- Earlier example: effort on hadronic resonances at the EW scale rather than TeV scale
- Mediator consequences
- Connecting to other neighboring efforts, such as for long-lived particle searches

Please contact us and join!

http://lpcc.web.cern.ch/lpcc/index.php?page=dm_wg

09:30	→ 11:00 N	ew topics (pitch talks)
	0	9:30 Prompt lepton-jet searches
		Speakers: Miriam Deborah Joy Diamond (University of Toronto (CA)), Miriam Diamond
	_	DMWG slides odf
	13:15	Simplified DM models: a case with t-channel colored scalar mediators ¶
		Speaker: Alexander Natale (Korea Institute for Advanced Study)
		ACN-LHCDMWG-2
	13:30	Parameter scans over couplings
		Speakers: Thomas David Jacques (Scuola Int. Superiore di Studi Avanzati (IT)), Thomas Jacques (U)
	ļ	Jacques_DMWG
		uture directions
	13:4	10:15 Search for mediators: leptons
	11.1	Speakers: Brvan Zaldivar , Brvan Zaldívar Montero (IFT UAM/CSIC)
		Zaldivar_DMWG.pdf
- 1	14:0	10:30 Searches for mediators: jets and heavy flavors
	11.1	Speakers: Matthew McCullough (M), Matthew McCullough (Oxford University), Matthew Philip Mccullough (CERN
11:00 -		
	14:1	LPCC.pdf
11:30 -	П.	
		10:45 Coffee break
- 1		11/15 Simplified models in Medaranh
	14:3	Speaker: Mathiau Pollon (University Wyarahyan)
		PELLEN_CERN_WG
- 1		11:28 The coannihilation codex
	14:4	Speakers: Felix Yu (Fermilab), Felix Yu (UC Irvine), Felix Yu (Johannes Gutenberg University Mainz)
12:00 -		
- 1		r1_coannination
_		11:41 Reinterpretation tools
	15:0	Speaker: Daniele Barducci (Unite Reseaux du CNRS (FR))
_		DMWG CEPN bard
		11:55 Mono-Z' and new directions
_	15:2	Speaker: Daniel Whiteson (University of California Irvine (US))
_		
		pec_am_zors.par
		12.07 Dark sector
		Speakers: Jessie Shelton (Yale University) . Julia (Jessie) Shelton (Ruthers University) . Julia Shelton
		151211-LPC forum

Additional Slides

If the Z boson mediates SM-DM interaction...

PDG (LEP) Invisible Decay Width of the Z

Fermionic DM

VALUE (MeV)	EVTS	DOCUMENT ID		TECN
499.0 ± 1.5	OUR FIT			
503 ± 16	OUR AVER	AGE Error includes	scale fac	tor of 1.2.
498 ±12 ±12	1791	ACCIARRI	1998G	L3
539 ±26 ±17	410	AKERS	1995C	OPAL
450 <u>±</u> 34 <u>±</u> 34	258	BUSKULIC	1993L	ALEP
$540 \pm 80 \pm 40$	52	ADEVA	1992	L3

Number from e^+e^- Colliders

Number of Light ν Types

Our evaluation uses the invisible and leptonic widths of the Z boson from our combined fit shown in the Particle Listings for the Z Boson, and the Standard Model value $\Gamma_{\nu}/\Gamma_{\ell}$ = 1.9908 ± 0.0015.

$= 1.5500 \pm 0.0013$.					
VALUE	DOCUMENT ID		TECN		
2.994±0.012 OUR EVALUATION	Combined fit to	all L	.EP data.		
• • We do not use the following data for averages, fits, limits, etc. • • •					
3.00 ± 0.05	¹ LEP	92	RVUE		
1 Simultaneous fits to all measure	d cross section da	ata f	rom all four LEP experin		

Number of Light ν Types from Direct Measurement of Invisible Z Width

In the following, the invisible Z width is obtained from studies of single-photon events from the reaction $e^+e^- \rightarrow \nu \bar{\nu} \gamma$. All are obtained from LEP runs in the $E_{\rm Cm}^{ee}$ range 88–94 GeV.

VALUE	DOCUMENT ID	TECN	COMMENT			
3.00±0.06 OUR AVERAGE						
3.01 ± 0.08	ACCIARRI	99R L3	1998 LEP run			
$2.98 {\pm} 0.07 {\pm} 0.07$	ACCIARRI	98G L3	LEP 1991-1994			
$2.89 {\pm} 0.32 {\pm} 0.19$	ABREU	97J DLPH	1993–1994 LEP runs			
$3.23 {\pm} 0.16 {\pm} 0.10$	AKERS	95C OPAL	1990-1992 LEP runs			
$2.68 {\pm} 0.20 {\pm} 0.20$	BUSKULIC	93L ALEP	1990–1991 LEP runs			
\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet						
$3.1 \ \pm 0.6 \ \pm 0.1$	ADAM	96C DLPH	$\sqrt{s}=$ 130, 136 GeV			

Limits from Astrophysics and Cosmology

Number of Light ν Types

("light" means < about 1 MeV). See also OLIVE 81. For a review of limits based on Nucleosynthesis, Supernovae, and also on terrestial experiments, see DENEGRI 90. Also see "Big-Bang Nucleosynthesis" in this *Review*. <u>VALUE</u> <u>DOCUMENT ID</u> <u>COMMENT</u>

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

Escudero et al., arXiv:1609.09079

Finv 10⁰ **10**⁻¹ Dirac Pth2=0.12 10⁻² ອີ 10⁻³ LUX/PANDAÌ XENON1 10^{-4} vFloor 10⁻⁵ **10**⁻⁶ 10⁴ 10¹ 10² 10³ m_{χ} (GeV)

nents

If the Higgs boson mediates SM-DM interaction...

LHC data can constrain the Higgs→invisible branching fraction, which is 10⁻³ in the SM

Fermionic DM

Escudero et al., arXiv:1609.09079

Η

If the Higgs boson mediates SM-DM interaction...

LHC data can constrain the Higgs \rightarrow invisible branching fraction, which is 10⁻³ in the SM

Fermionic DM

Escudero et al., arXiv:1609.09079

PHYSICAL REVIEW D 82, 116010 (2010)

TABLE I. Operators coupling WIMPs to SM particles. The operator names beginning with D, C, R apply to WIMPS that are Dirac fermions, complex scalars or real scalars, respectively.

Name	Operator	Coefficient
D1	$\bar{\chi}\chi\bar{q}q$	m_q/M_*^3
D2	$\bar{\chi}\gamma^5\chi\bar{q}q$	im_q/M_*^3
D3	$\bar{\chi}\chi\bar{q}\gamma^5q$	im_q/M_*^3
D4	$\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$	m_q/M_*^3
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
D8	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
D9	$ar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{lphaeta}q$	i/M_{*}^{2}
D11	$\bar{\chi}\chi G_{\mu u}G^{\mu u}$	$\alpha_s/4M_*^3$
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$
D13	$ar{\chi} \chi G_{\mu u} ilde{G}^{\mu u}$	$i\alpha_s/4M_*^3$
D14	$ar{\chi} \gamma^5 \chi G_{\mu u} ilde{G}^{\mu u}$	$\alpha_s/4M_*^3$
C1	$\chi^{\dagger}\chi\bar{q}q$	m_q/M_*^2
C2	$\chi^{\dagger}\chi\bar{q}\gamma^{5}q$	im_q/M_*^2
C3	$\chi^{\dagger}\partial_{\mu}\chi\bar{q}\gamma^{\mu}q$	$1/M_{*}^{2}$
C4	$\chi^{\dagger}\partial_{\mu}\chi\bar{q}\gamma^{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
C5	$\chi^{\dagger}\chi G_{\mu u}G^{\mu u}$	$\alpha_s/4M_*^2$
C6	$\chi^{\dagger}\chi G_{\mu u} ilde{G}^{\mu u}$	$i\alpha_s/4M_*^2$
R1	$\chi^2 \bar{q} q$	$m_q/2M_*^2$
R2	$\chi^2 \bar{q} \gamma^5 q$	$im_q/2M_*^2$
R3	$\chi^2 G_{\mu u} G^{\mu u}$	$\alpha_s/8M_*^2$
R4	$\chi^2 G_{\mu u} ilde{G}^{\mu u}$	$i\alpha_s/8M_*^2$

Problem (when applying to LHC):

In typical completions, the inaccessible physics must be too strongly coupled to produce observable signals

e.g. s-channel mediator: rate depends on

 $M_{\star} = M_{\rm med} / \sqrt{{\rm g}_q \, {\rm g}_{\chi}}$

High enough rate implies either:

- heavy mediator, non-perturbative couplings
- light mediator (EFT incorrect theory)

LHC probes 'high' energy scales If 'high' is high enough, it can discovery and characterize the interactions between normal and dark matter

LHC probes 'high' energy scales

If 'high' is high enough, it can discovery and characterize the interactions between normal and dark matter

Requires more model assumptions (and parameters)

Searching for Dark Matter Production

(or: collider-stable weakly-interacting particles)

Searching for Dark Sector Interactions

Searches for long-lived particles

Dark matter very weakly-coupled to the SM through **light**, **long-lived particles**

- Displaced decays (e.g. displaced / emerging jets)
- Collimated decay products (lepton jets)

Current detectors not designed for

- reconstruction of very odd physics objects
- triggering on displaced decays of neutral longlived particles

w

- triggering on 'low' energy physics

Partial wish list

- Better online reconstruction capability
- Timing information and dE/dx
- Detector design for very displaced objects cases (e.g. disappearing tracks)

Relic density for summary plots

- Previous relic density calculation with MadDM: missing t-channel annihilation for $\chi \chi^- \rightarrow 2$ mediators
- Now fixed in MadDM 2.0.6
- New curves for summary plots provided centrally by DMWG [link to git repository]

