Search for Neutrino Emission from Fast Radio Bursts with IceCube

Donglian Xu

Samuel Fahey, Justin Vandenbroucke and Ali Kheirandish

for the IceCube Collaboration

TeV Particle Astrophysics (TeVPA) 2017 August 7 - 11, 2017 | Columbus, Ohio

Fast Radio Bursts - Discovery in 2007

Frequency (GHz)

Fast Radio Bursts Emitting Neutrinos?

- Blitzar "Cataclysmic" [H. Falcke and L. Rezzolla, A&A 562, A137 (2014)]
- Binary neutron star merger [T. Totani, Pub. Astron. Soc. Jpn. 65, L12 (2013)]
- Evaporating primordial black holes [Halzen *et al.*, PRD 1995] "MeV neutrinos"

No concrete neutrino production models yet

Goal: detecting TeV-PeV astrophysical neutrinos Construction completed in December 2010

Neutrino Signatures in Ic⁻

(1) Track: charged current v_{μ}

- <1° Angular resolution</p>
- Factor ~ 2 energy resolution

(2) Cascade / Shower: all neutral current, charged current v_e , low-E charged current v_{τ}

- 10° Angular resolution above100 TeV
- 15% energy resolution on deposited energy

Late

IceCube has detected a diffuse astrophysical neutrino flux, but no TeV neutrino point sources have been identified to date.

• Burst times cover IceCube data taking seasons from 2010 to 2015 (6 years)

6

• A total of **29** FRBs (**11** unique locations).

North (DEC >= -5°)	South (DEC < -5°)	Background PDF derived from off-time data
	x	0.35 Northern sky IC86-1 background PDF
842,597 events	379,261 events	0.30 → Spline fit, k=3 → Data (normalized) 0.25
<i>(collected from 2011-2015)</i>	<i>(collected from 2010-2014)</i>	0.20 0.15 0.10
"dominated by atmospheric neutrinos"	"dominated by atmospheric muons"	0.05 1.10 1.10 1.05 1.00 1.05 1.00
A total of 1.2 million events in 6 years		$ \begin{bmatrix} 5 & 0.95 \\ -1.0 & -0.8 & -0.6 & -0.4 & -0.2 & 0.0 & 0.2 \\ Cos(zenith) \end{bmatrix} $

<u>2015 ApJ 805 L5</u> <u>arXiv:1702.06868</u>

Donglian Xu I High-E Neutrinos from Fast Radio Bursts | TeVPA2017, Columbus

WISCONSIN ICECUBE PARTICLE ASTROPHYSICS CENTER

The likelihood for observing *N* events with properties $\{x_i\}$ for $(n_s + n_b)$ expected number of events is:

$$L(N, \{x_i\}; n_s + n_b) = \frac{(n_s + n_b)^N}{N!} \cdot \exp(-(n_s + n_b)) \cdot \prod_{i=1}^N P(x_i)$$

The normalized probability of observing event i is $P(x_i)$:

$$P(x_i) = \frac{n_s S(x_i) + n_b B(x_i)}{n_s + n_b} \qquad S_i = S_{\text{time}}(t_i) \cdot S_{\text{space}}(\vec{x}_i)$$
$$B_i = B_{\text{time}}(t_i) \cdot B_{\text{space}}(\vec{x}_i)$$

"temporal" + "spatial"

$$T := \ln \frac{L(N, \{x_i\}; n_s + n_b)}{L_0(N, \{x_i\}; n_b)}$$

$$T := -\hat{n}_s + \sum_{i=1}^N \ln(1 + \frac{\hat{n}_s S_i}{\langle n_b \rangle B_i})$$

• Stacking "Distributed fluence test"

Max-burst

Model independent

"Single bright neutrino source test"

- Expanding time windows centered at burst times
- 25 time windows from 10 ms to 2 days, expanding as 2ⁱx10 ms (i =0, ..., 24)

Sensitivity & Discovery Potentials - Stacking

North

 E^{-2} sensitivity $E^{-2} 5\sigma$ disc. poten. E^{-2} sensitivity E^{-2} 5 σ disc. poten. $E^{-2.5}$ sensitivity $E^{-2.5}$ 5 σ disc. poten. $E^{-2.5}$ sensitivity $E^{-2.5}$ 5 σ disc. poten. - - -- - - E^{-3} sensitivity E^{-3} 5 σ disc. poten. ---- E^{-3} sensitivity ••••• $E^{-3} 5\sigma$ disc. poten. **IceCube Preliminary** $E^2F @ 100 TeV (GeV cm^{-2})$ **IceCube Preliminary** $\mathrm{E}^{2}\mathrm{F}$ @ 100 TeV (GeV cm^{-2}) 10^{0} 10^{-1} 10^{-2} 10^{-1} 10^{-2} 10^{-1} 10^{0} 10^1 10^2 10^{3} 10^4 10^5 10^{-2} 10^{0} 10^2 10^1 10^{3} 10^{-1} 10^{4} 10^{5} ΔT (s) Δ T (s)

► 25 time windows from 10 ms to 2 days, expanding as 2ⁱx10 ms (i =0, ..., 24)

One coincident event can be discovery in the short time windows

Donglian Xu I High-E Neutrinos from Fast Radio Bursts | TeVPA2017, Columbus

South

Sensitivity & Discovery Potentials - Max-burst

North

► 25 time windows from 10 ms to 2 days, expanding as 2ⁱx10 ms (i =0, ..., 24)

One coincident event can be discovery in the short time windows

Donglian Xu I High-E Neutrinos from Fast Radio Bursts | TeVPA2017, Columbus

South

North Stacking

North Max-burst

South Stacking

South Max-burst

Conclusion & Outlook

- Fast radio bursts (FRBs) could emit high energy neutrinos
- A maximum likelihood analysis has been established to search for spatial and temporal coincidence between IceCube neutrinos and FRBs
- No significant correlations between IceCube neutrinos and FRBs were found in 6 years of data.
- Most stringent limits on neutrino fluence from FRBs have been set to be ~0.04 GeV cm⁻². Publication is in preparation.
- IceCube can now quickly follow up on the FRBs to be detected in the forthcoming future, adding a multimessenger window to help untangle the FRB mystery

15

Assume the same escape time t₀:

$$\Delta t = D \cdot \left| \frac{1}{c} - \frac{1}{v_{\nu}} \right| = D \cdot \left(\frac{1}{\sqrt{\left(1 - \frac{1}{\gamma^2}\right)}} - 1 \right) s$$
$$\gamma = \frac{E_{\nu}}{m_{\nu}}, \ c = 1$$
$$\Delta t \simeq \frac{1}{2} \cdot D \cdot \left(\frac{m_{\nu}}{E_{\nu}} \right)^2$$
$$\Delta t \simeq \frac{1}{2} \cdot \left(\frac{m_{\nu}}{eV} \right)^2 \cdot \left(\frac{\text{MeV}}{E_{\nu}} \right)^2 \cdot \left(\frac{D}{10 \text{ kpc}} \right)$$

For $z \simeq 0.5$, $D_{\text{light}} \simeq 2 \text{ Gpc}$

For 10 MeV neutrinos:

$$\Delta t \simeq \frac{1}{2} \cdot \left(\frac{1\,\mathrm{eV}}{\mathrm{eV}}\right)^2 \cdot \left(\frac{\mathrm{MeV}}{10\,\mathrm{MeV}}\right)^2 \cdot \left(\frac{2\,\mathrm{Gpc}}{10\,\mathrm{kpc}}\right) \simeq 1000\,\mathrm{s}$$

For 1 TeV neutrinos:

$$\Delta t \simeq \frac{1}{2} \cdot (\frac{1\,\mathrm{eV}}{\mathrm{eV}})^2 \cdot (\frac{\mathrm{MeV}}{1\,\mathrm{TeV}})^2 \cdot (\frac{2\,\mathrm{Gpc}}{10\,\mathrm{kpc}}) \simeq 1.0 \times 10^{-7} \;\mathrm{s}$$

Photon trapped time unknown

