Search for Neutrino Emission from Fast Radio Bursts with IceCube

Donglian Xu

Samuel Fahey, Justin Vandenbroucke and Ali Kheirandish

for the IceCube Collaboration
Fast Radio Bursts - Discovery in 2007

Lorimer et al., *Science* 318 (5851): 777-780

\[
\Delta t_{\text{delay}} = \frac{e^2}{2\pi m_e c^3} \cdot \text{DM} \cdot w^{-2}
\]

\[
= 1.5 \times 10^{-24} \text{ s} \cdot \text{DM} \cdot w^{-2}
\]

\[
\text{DM} = \int n_e dl = 375 \pm 1 \text{ cm}^{-3} \text{ pc}
\]

“very compact”

“extragalactic”?

\[
\delta t_{\text{width}} = 4.6 \text{ ms} \left(\frac{\omega}{1.4 \text{ GHz}}\right)^{-4.8\pm0.4}
\]

\[
\int dt I_\omega \simeq 150 \pm 50 \text{ Jy ms} @ 1.4 \text{ GHz}
\]

- A total of ~23 FRBs detected to date.
- Estimated FRB event rate is ~1,000/day

Galactic DM: 25 cm\(^{-3}\) pc

SMC

- J0045–7042 (125)
- J0113–7220 (76)
- J0111–7131 (70)
- J0045–7319 (105)
- J0131–7310 (205)
- J0131–7131 (125)
Fast Radio Bursts Emitting Neutrinos?

- **Blitzar “Cataclysmic”**

- **Binary neutron star merger**

- **Evaporating primordial black holes**

 [Halzen et al., PRD 1995]

 “MeV neutrinos”

- **Magnetar/SGRs hyperflares**

 [Halzen et al. (2005) astro-ph/0503348]

 “TeV neutrinos”? → this work

No concrete neutrino production models yet
IceCube Detector

Goal: detecting TeV-PeV astrophysical neutrinos

Construction completed in December 2010

IceCube Laboratory

Data is collected here and sent by satellite to the data warehouse at UW–Madison

Digital Optical Module (DOM)

5,160 DOMs deployed in the ice

86 strings of DOMs, set 125 meters apart

60 DOMs on each string

DOMs are 17 meters apart

Amundsen–Scott South Pole Station, Antarctica

A National Science Foundation-managed research facility

Antarctic bedrock
(1) **Track: charged current** ν_μ
- $<1^\circ$ Angular resolution
- Factor ~ 2 energy resolution

(2) **Cascade / Shower:** all neutral current, charged current ν_e, low-E charged current ν_τ
- 10° Angular resolution above 100 TeV
- 15% energy resolution on deposited energy

IceCube has detected a diffuse astrophysical neutrino flux, but **no TeV neutrino point sources** have been identified to date.
Burst times cover IceCube data taking seasons from 2010 to 2015 (6 years)

A total of 29 FRBs (11 unique locations).

Repeated bursts are treated as unique bursts in space & time
Event Samples & Background Modeling

<table>
<thead>
<tr>
<th>North</th>
<th>South</th>
</tr>
</thead>
<tbody>
<tr>
<td>(DEC >= -5°)</td>
<td>(DEC < -5°)</td>
</tr>
<tr>
<td>842,597 events</td>
<td>379,261 events</td>
</tr>
<tr>
<td>(collected from 2011-2015)</td>
<td>(collected from 2010-2014)</td>
</tr>
</tbody>
</table>

“dominated by atmospheric neutrinos” “dominated by atmospheric muons”

A total of 1.2 million events in 6 years

Background PDF derived from off-time data

Northern sky IC86-1 background PDF

Integrated Fit / Data vs. Cos(zenith)

Donglian Xu | High-E Neutrinos from Fast Radio Bursts | TeVPA2017, Columbus
The likelihood for observing \(N \) events with properties \(\{x_i\} \) for \((n_s + n_b)\) expected number of events is:

\[
L(N, \{x_i\}; n_s + n_b) = \frac{(n_s + n_b)^N}{N!} \cdot \exp(-(n_s + n_b)) \cdot \prod_{i=1}^{N} P(x_i)
\]

The normalized probability of observing event \(i \) is \(P(x_i) : \)

\[
P(x_i) = \frac{n_s S(x_i) + n_b B(x_i)}{n_s + n_b}
\]

\[
S_i = S_{\text{time}}(t_i) \cdot S_{\text{space}}(\vec{x}_i)
\]

\[
B_i = B_{\text{time}}(t_i) \cdot B_{\text{space}}(\vec{x}_i)
\]

“temporal” + “spatial”

\[
T := \ln \frac{L(N, \{x_i\}; n_s + n_b)}{L_0(N, \{x_i\}; n_b)}
\]

\[
T := -\hat{n}_s + \sum_{i=1}^{N} \ln(1 + \frac{\hat{n}_s S_i}{<n_b>B_i})
\]
Search Strategy

• **Stacking**

 “Distributed fluence test”

 - Model independent

 - Expanding time windows centered at burst times

 - 25 time windows from 10 ms to 2 days, expanding as $2^i \times 10$ ms ($i = 0, \ldots, 24$)

• **Max-burst**

 “Single bright neutrino source test”

 - Model independent

 - Expanding time windows centered at burst times

 - 25 time windows from 10 ms to 2 days, expanding as $2^i \times 10$ ms ($i = 0, \ldots, 24$)
25 time windows from 10 ms to 2 days, expanding as $2^i \times 10 \text{ ms (i =0, ..., 24)}$

One coincident event can be discovery in the short time windows
25 time windows from 10 ms to 2 days, expanding as $2^i \times 10$ ms ($i = 0, \ldots, 24$)

One coincident event can be discovery in the short time windows
Results - Most Significant Bursts & Events

North Max-burst

Most optimal time window:
\[\Delta T = 655.36 \text{s} \]

South Max-burst

Most optimal time window:
\[\Delta T = 167772.16 \text{s} \]
Results - Upper Limits

North Stacking

\[\Delta T = 655.36 \text{ s} \]

North Max-burst

\[\Delta T = 655.36 \text{ s} \]
Results - Upper Limits

South Stacking

- E^{-2} sensitivity
- $E^{-2.5}$ sensitivity
- E^{-3} sensitivity

IceCube Preliminary

South Max-burst

- E^{-2} sensitivity
- $E^{-2.5}$ sensitivity
- E^{-3} sensitivity

IceCube Preliminary

$E^2 F @ 100 \text{ TeV (GeV cm}^{-2})$

$\Delta T (s)$

10^{-2} 10^{-1} 10^0 10^1 10^2 10^3 10^4 10^5
Conclusion & Outlook

- Fast radio bursts (FRBs) could emit high energy neutrinos

- A maximum likelihood analysis has been established to search for spatial and temporal coincidence between IceCube neutrinos and FRBs

- No significant correlations between IceCube neutrinos and FRBs were found in 6 years of data.

- Most stringent limits on neutrino fluence from FRBs have been set to be \(~0.04\, \text{GeV cm}^{-2}\). Publication is in preparation.

- IceCube can now quickly follow up on the FRBs to be detected in the forthcoming future, adding a multi-messenger window to help untangle the FRB mystery
Back up slides
Assume the same escape time t_0:

$$\Delta t = D \cdot \left| \frac{1}{c} - \frac{1}{v_\nu} \right| = D \cdot \left(\frac{1}{\sqrt{1 - \frac{1}{\gamma^2}}} - 1 \right) \text{ s}$$

$$\gamma = \frac{E_\nu}{m_\nu}, \ c = 1$$

$$\Delta t \simeq \frac{1}{2} \cdot D \cdot \left(\frac{m_\nu}{E_\nu} \right)^2$$

$$\Delta t \simeq \frac{1}{2} \cdot \left(\frac{m_\nu}{\text{eV}} \right)^2 \cdot \left(\frac{\text{MeV}}{E_\nu} \right)^2 \cdot \left(\frac{D}{10 \text{ kpc}} \right)$$
Neutrino vs Photon Arrival Times

For $z \simeq 0.5$, $D_{\text{light}} \simeq 2$ Gpc

For 10 MeV neutrinos:

$$\Delta t \simeq \frac{1}{2} \cdot \left(\frac{1 \text{ eV}}{\text{eV}} \right)^2 \cdot \left(\frac{\text{MeV}}{10 \text{ MeV}} \right)^2 \cdot \left(\frac{2 \text{ Gpc}}{10 \text{ kpc}} \right) \simeq 1000 \text{ s}$$

For 1 TeV neutrinos:

$$\Delta t \simeq \frac{1}{2} \cdot \left(\frac{1 \text{ eV}}{\text{eV}} \right)^2 \cdot \left(\frac{\text{MeV}}{1 \text{ TeV}} \right)^2 \cdot \left(\frac{2 \text{ Gpc}}{10 \text{ kpc}} \right) \simeq 1.0 \times 10^{-7} \text{ s}$$

Photon trapped time unknown