Seeking the Sources of High-Energy Neutrinos with Swift

Azadeh Keivani
Penn State University

Collaborators:
Doug Cowen, James DeLaunay, Derek Fox, Jamie Kennea, Gordana Tešić, Colin Turley (Penn State University)
Phil Evans, Julian Osborne (University of Leicester)
Frank Marshall (NASA GSFC)

TeVPA 2017
Center for Cosmology and AstroParticle Physics
The Ohio State University
August 9
Swift Searches for EM counterpart to IceCube neutrinos

Swift follow-up campaigns:
- Powerful approach to search for luminous EM counterparts to high-energy cosmic neutrinos
- Set useful constraints on associated transients
- Use XRT and UVOT telescopes
- Under our NASA Swift Cycle 12 Guest Investigator program
Current IceCube public real-time streams

- Two high energy real-time public streams:
 - **High Energy Starting Events (HESE)**
 - Since April 2016
 - Six events so far
 - Only track-like
 - **Extremely High Energy (EHE)**
 - Since July 2016
 - Four events so far
 - Track-like

- Distribute via:
 - Astrophysical Multimessenger Observatory Network (AMON)
 - Gamma-ray Coordinates Network (GCN)
 - https://gcn.gsfc.nasa.gov/amon.html

- Triggered *Swift* follow-up observations of:
 - IceCube-160731A
 - IceCube-161103A
 - IceCube-170312A
 - IceCube-170321A
IceCube Event Properties

<table>
<thead>
<tr>
<th>Events</th>
<th>Stream</th>
<th>Charge (p.e.)</th>
<th>Signalness*</th>
<th>R_{50} Rev0</th>
<th>R_{90} Rev0</th>
<th>R_{50} Rev1</th>
<th>R_{90} Rev1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IceCube-160731A</td>
<td>HESE/EHE</td>
<td>15814</td>
<td>0.91</td>
<td>0.42° (HESE)</td>
<td>1.23° (HESE)</td>
<td>0.35°</td>
<td>0.75°</td>
</tr>
<tr>
<td>IceCube-161103A</td>
<td>HESE</td>
<td>7546</td>
<td>0.30</td>
<td>0.42°</td>
<td>1.23°</td>
<td>0.65°</td>
<td>1.1°</td>
</tr>
<tr>
<td>IceCube-170312A</td>
<td>HESE</td>
<td>8858</td>
<td>0.78</td>
<td>0.42°</td>
<td>1.23°</td>
<td>-</td>
<td>< 0.5°</td>
</tr>
<tr>
<td>IceCube-170321A</td>
<td>EHE</td>
<td>6214</td>
<td>0.28</td>
<td>0.32°</td>
<td>-</td>
<td>-</td>
<td>1.2°</td>
</tr>
</tbody>
</table>

* Signalness for EHE is an estimate probability that the event is due to an astrophysical neutrino. It is called "signal_trackness" for HESE reflecting the likelihood that the neutrino being both signal-like and track-like.
Swift Observations of IceCube Events

- Priority 1 TOO
- Mosaic of 19 pointings for HESE and 7 pointings for EHE
- Automated analysis of XRT data: software at University of Leicester, Phil Evans

<table>
<thead>
<tr>
<th>Events</th>
<th>Swift Start Obs Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>IceCube-160731A</td>
<td>~ 1 hr</td>
</tr>
<tr>
<td>IceCube-161103A</td>
<td>~ 5 hrs</td>
</tr>
<tr>
<td>IceCube-170312A</td>
<td>~ 2 hrs</td>
</tr>
<tr>
<td>IceCube-170321A</td>
<td>~ 6 hrs</td>
</tr>
</tbody>
</table>
Swift Observations of IceCube-160731A

- Observations taken 3.9 to 46.5 ks after the neutrino trigger
- Covered 2.1 deg²
- Covered 64.2% of the neutrino revised r_{90} error region
- Collected ~ 800 s per field of PC mode data per tile
- Six X-ray sources were detected
 - Known X-ray emitters
 - Catalog objects with expected X-ray emission
- Flux upper limits (0.3-10 KeV):
 - 4.3×10^{-13} erg cm$^{-2}$ s$^{-1}$ for a typical AGN spectrum ($N_H=3 \times 10^{20}$ cm$^{-2}$, $\gamma=1.7$)
 - 3.1×10^{-13} erg cm$^{-2}$ s$^{-1}$ for overlapped areas
Swift XRT Observations

<table>
<thead>
<tr>
<th>Events</th>
<th>Total Obs Time (ks)</th>
<th>Pointing Coverage (deg²)</th>
<th>Neutrino Coverage (rev1 r₉₀ error region)</th>
<th>Time per tile (s)</th>
<th>Src #</th>
<th>3σ flux UL (erg cm⁻² s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IceCube-160731A</td>
<td>42.6</td>
<td>2.1</td>
<td>64.2 %</td>
<td>~ 800</td>
<td>6</td>
<td>4.3 x 10⁻¹³</td>
</tr>
<tr>
<td>IceCube-161103A</td>
<td>17.7</td>
<td>2.1</td>
<td>68 %</td>
<td>~ 150 - 250</td>
<td>4</td>
<td>1.2 x 10⁻¹²</td>
</tr>
<tr>
<td>IceCube-170312A</td>
<td>47.6</td>
<td>2.1</td>
<td>82.3 %</td>
<td>~ 800</td>
<td>5</td>
<td>4.1 x 10⁻¹³</td>
</tr>
<tr>
<td>IceCube-170321A</td>
<td>14.1</td>
<td>0.5</td>
<td>22.1 %</td>
<td>~ 900</td>
<td>2</td>
<td>1.5 x 10⁻¹³</td>
</tr>
</tbody>
</table>

GCN circulars:
Swift UVOT observations

<table>
<thead>
<tr>
<th>Events</th>
<th>Filter used</th>
<th>Exposure (s)</th>
<th>Limiting sensitivity (mag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IceCube-160731A</td>
<td>U</td>
<td>420</td>
<td>18.9</td>
</tr>
<tr>
<td>IceCube-161103A</td>
<td>U (16 pointings) + UVW1 (3 pointings)</td>
<td>250</td>
<td>18.9</td>
</tr>
<tr>
<td>IceCube-170312A</td>
<td>U</td>
<td>110</td>
<td>18.9</td>
</tr>
<tr>
<td>IceCube-170321A</td>
<td>U</td>
<td>922</td>
<td>18.9</td>
</tr>
</tbody>
</table>

No transient sources were discovered in any of these searches associated with the IceCube trigger.
• A library of 192 Swift XRT light-curves
• Power-law fits
• Assume neutrino detection time to be coincident with the GRB
• Median X-ray afterglow, 80% and 50% confidence ranges
• X-ray flux limits for neutrino events averaged over all tiles of each mosaic pointing
• The flux limit: the # of source photons to yield an excess over background with p-value < 10^{-6} in a single source aperture
• Such excesses occur via Poisson fluctuation of the background in ~10% (4%) of 19(7)-tile observing campaigns
$P_{\Delta t,x}$ of the X-ray afterglows of *Swift*-detected GRBs would be recovered by the follow-up campaigns, assuming the burst occurred within the FOV of the observations.

<table>
<thead>
<tr>
<th>Events</th>
<th>$P_{\Delta t,x}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>IceCube-160731A</td>
<td>65%</td>
</tr>
<tr>
<td>IceCube-161103A</td>
<td>30%</td>
</tr>
<tr>
<td>IceCube-170312A</td>
<td>55%</td>
</tr>
<tr>
<td>IceCube-170321A</td>
<td>43%</td>
</tr>
</tbody>
</table>
AGILE’s Candidate γ-Ray Precursor to IceCube-160731A

- Precursor to the IceCube-160731A
- No detection in ± 1 ks of T_0
- Use AGILE-GRID Automatic Quick Look procedure over 48-hrs time bins:
 - Excess > 100 MeV
 - $T_0 - 1.8 < T < T_0 - 0.8$ days
 - Consistent with ν error region
 - Post-trial significance $\sim 4\sigma$
 - AGL J1418+0008
- Fermi-LAT had a low exposure during the AGILE γ-ray transient
- Dedicated Swift ToO data \rightarrow no X-ray counterparts
- Check Swift BAT data for possible γ-ray counterparts

arXiv:1707.08599
Conclusions and Prospects

• Four *Swift* follow-up campaigns so far seeking to identify transient or variable X-ray or UV/optical sources that might be associated with IceCube high-energy cosmic muon neutrinos

• Observations covered 64.2%, 68.0%, 82.3% and 22.1% of the 90% containment regions for the four neutrino events

• No compelling candidate X-ray or UV/optical counterpart for any of the events identified

• 3σ upper limits on the flux for a typical AGN spectrum placed

• 30%-65% of X-ray afterglows of *Swift*-detected GRBs would be recovered by the follow-up campaigns of these neutrinos

• A paper in preparation with upper limits considering more source scenarios: blazars and supernovae

• Plan to continue *Swift* follow-up observations of IceCube high-energy neutrinos at a rate of roughly four campaigns per year