

# Precision measurement of <sup>3</sup>He to <sup>4</sup>He ratio in Cosmic Rays with AMS-02

#### F. Giovacchini - CIEMAT on behalf of the AMS-02 collaboration



#### Motivation



- Understanding the propagation processes in the galaxy is crucial for modeling the background for the search of new physics;
- Secondary to primary ratios provide valuable information to study the propagation parameters;
- As most of B in CR is produced by C, most of <sup>3</sup>He is belived to be of secondary origin, produced from nuclear interactions of <sup>4</sup>He with the ISM:



- B/C and <sup>3</sup>He/<sup>4</sup>He are probing different propagation distances, accounting for the smaller <sup>4</sup>He spallation cross section, when compared to the C one;
- > <sup>3</sup>He/<sup>4</sup>He allows to test the universality of propagation for different A/Z.

#### Available measurements





#### AMS measurement range





### AMS and <sup>3</sup>He/<sup>4</sup>He measurement



 AMS-02 is a precision multiporpose spectrometer operating at 400 km orbit. It is made of varius sub-detectors for a redundant Particle Identification.
 Mass is determined through the simultaneous measurement of particle Charge (Z), Rigidity (R) and velocity (β)



F.Giovacchini

TeVPa, Columbus

#### Isotopic composition with AMS

Velocity from TOF:

- $\Delta_{\beta}/\beta^2 \approx 2\%$  (He)  $E_{kin}$ >0.3 GeV/n

Velocity from RICH (2 radiators):

NaF crystals

- $\Delta_{\beta}/\beta \approx 0.3\%$  (He)
- n=1.33, E<sub>kin</sub>>0.5 GeV/n

Silica aerogel (Agl)

- $\Delta_{\beta}/\beta \approx 0.08\%$  (He)
- n=1.05, E<sub>kin</sub>>2.1 GeV/n

This analysis is based on RICH detector





**UPPER TOF** 

## AMS-02

#### <sup>3</sup>He/<sup>4</sup>He separation



<sup>3</sup>He and <sup>4</sup>He peaks are not separated, therefore we follow a stastistical approach

TeVPa, Columbus

### Analysis Methods



3 independent methods have been developed:

- 1. Mass Template extracted from data (DATA driven)
- 2. Parametrization of 1/M distribution with analytical function
- 3. Unfolding of the momentum distribution (MC driven)

In all approaches we select bins in beta and perform the measurement as a function of the kinetic energy per nucleon.

## Analysis Method (I):Data Template

The idea is to extract a Template for <sup>4</sup>He directly from data, taking advantage from the screening effect of the geomagnetic field.

For a given geographic location (R<sub>co</sub>), the geomagnetic field screens lighter isotopes (<sup>3</sup>He) which are below a certain velocity  $\beta_{co}$ (<sup>3</sup>He)





## Analysis Method (I):Data Template



For a given geographic location (R<sub>co</sub>), the geomagnetic field screens lighter isotopes (<sup>3</sup>He) which are below a certain velocity  $\beta_{co}$ (<sup>3</sup>He)





## Analysis Method (I): Data Template

- <sup>4</sup>He Template comes directly from data (not dependent on Monte Carlo simulation fine tuning);
- > <sup>3</sup>He Template is obtained from scaling <sup>4</sup>He one accordingly with mass ratio



<sup>4</sup>He Template is not completely pure: residual <sup>3</sup>He, mainly due to limited GeoCutoff knowledge

F.Giovacchini

#### Analysis Method (II): Parametrization of 1/M



- The idea is to obtain an analytical form for 1/mass template (both for <sup>4</sup>He and <sup>3</sup>He) from the resolution functions for 1/R and velocity, extracted from MC.
- Data are then fitted with <sup>4</sup>He and <sup>3</sup>He TP imposing 2 conditions:
  ratio of <sup>4</sup>He and <sup>3</sup>He peak position is a constant;
  - ratio of the peak width scales accordingly with the mass ratio.



## Analysis Method (III): Unfolding



- The idea is to get a description of the momentum resolution, taking advantage of the effort on MC fine tuning done for He flux.
- Select fine beta bins compared with beta resolution (inside each bin momentum is "monochromatic" compared with Rigidity resolution).
- Use unfolding of momentum within the beta bin, with the tracker resolution matrix to get <sup>3</sup>He and <sup>4</sup>He peaks and count events.
- Fold back the results and check they agree with data.



F.Giovacchini

## Study of Systematics



All methods provide results with statistical error <1%. The study of the systematic has been addressed independently for each of the analysis methods:

- Systematics specific of each methodology and fitting procedure
- Knowledge of the beta and rigidity resolution
- <sup>3</sup>He and <sup>4</sup>He different acceptance (Tol corrections)



## Study of Systematics



Common systematics: estimation of the fragmentations inside the detector

- Z>2 fragmentations into He is negligible and removed with L1 charge
- <sup>4</sup>He-><sup>3</sup>He interactions are estimated from MC



- Validation with data has been addressed by means of:
  - <sup>4</sup>He-><sup>3</sup>H
  - measurement of residual <sup>3</sup>He under cutoff
- ➤ Total sys error of the order of 1-5% (1-10GeV)

#### Results





The 3 presented independent methods agree within 4%



#### Conclusions

- A preliminary measurement of <sup>3</sup>He/<sup>4</sup>He ratio in cosmic rays with AMS has been presented;
- This measurement is important to constrain GCR propagations models;
- The results cover a kinetic energy range (from 0.8 to 10 GeV/n) where previous measurement are sparse and affected by large errors;
- Three independent approaches developed to extract the isotopic ratio provide results within 4%.

## THANK YOU!

AMS-02

#### Motivation





Effective propagation distance:  $\langle X \rangle \sim \sqrt{6}D\tau \sim 2.7 \text{ kpc } R^{\delta/2} (A/12)^{-1/3}$ Helium:  $\sim 3.6 \text{ kpc } R^{\delta/2}$ Carbon:  $\sim 2.7 \text{ kpc } R^{\delta/2}$ 

### RICH Performance on ISS (Aerogel)





## Analysis Method (III): Unfolding

Reconstructed momentum [GeV]

40

30

20

Main ingredients:

-Smoothed migration matrix from MC

-Beta resolution





10-4

#### Systematics Unfolding





#### AMS measurement compared to propagation models

