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Evidence of Stochastic Acceleration of Secondary
Antiprotons by Supernova Remnants
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Producing hard CR Secondary component from
Stochastic Acceleration inside SNRs

Blasi, PRL 2009, Mertsch & Sarkar PRL 2009

Acceleration in SNR Propagation in Galaxy
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Pic from: Ahlers, Mertsch, Sarkar PRD 2009

Interplay of three typical timescales for CRs: Spallation, Escape and
Acceleration inside the Sources.
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Some details on the ac-
celerated secondary CRs:
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Source term inside the SNR: > > > -
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Propagation inside the SNR (diffusion, advectibn, source, decay/spallation and
adiabatic E losses):
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Here the factor that defines the amplitude of the enhancement is:@: (B/ @
allowing for faster diffusion around the shock front .
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Thus the source term of SNR CR changes: f; (xz,p) = fi(0,p) + 4; (0.p) fjr (p)fi(0. p )a;'




Accounting for all galactic SNRs and in-
cluding propagation effects, one can
expect a rise in other secondary/primary

CR ratios should be observed with AMS-02.

This results in Limits from B/C
(including background uncertainties),
on the acceleration of secondary
CRs in supernova remnants:
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The impact of this additional
secondary component is more
evident for high E, light nuclei:
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Impl/cat/ons on the Positron fract/on

----- Background - PAMELA
—— Kz=423  AMS-02
- —-——- Kp=8.0 7

-—--Kg=159

E(GeV)

0.50

E max

’RD 2014

-7 $ 0.10}
>
e e e +\ 0.05
__________________________________________ N
. 0.02 -
IC and Dan Hooper F
10 20 50 100 200 500

|- Background

| ——— Eqax=3TeV
-— EmlX =10 TeV
=100 TeV

- PAMELA
» AMS-02

10

20

50 100 200 500
E(GeV)

Secondary CRs produced in SNRs can NOT explain the full positron fraction
excess even for optimistic cases of energy losses inside the SNRs.

What about the Antiproton to Proton Ratio?

Antiprotons background uncertainties are very large. They are associated

with:

I) the antiproton production cross-section from CR protons and heavier

nuclei collisions with the ISM

gas

ii) the propagation of CRs through the ISM

iii) Solar Modulation



) Antiproton production cross-section uncertainties

The are significant uncertainties on the antiproton production cross-section

directly from p-p collisions. Most parametrizations have only used data from

the 70s.
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Also one has to include the prOdUCtiOn of FIG. 8. Estimate of the uncertainties in the antiproton source

term from inelastic pp scattering. The blue band indicates the

antiprOtOnS from collisions with heavier 3o uncertainty band due to the global fit with Eq.(13), while

; ; ; ; the red band corresponds to the convolution of the uncertain-
nuclei (malnly He) ! which can contribute ties brought by fits to the data with Eq.(13), Eq.(12) and

~40% more antiprOtOnS than the P-p with the spline interpolation (see Fig.6.). The orange band
collisions alone. Also contribution from takes into account the contribution from decays of antineu-

trons produced in the same reactions. Vertical bands as in

antineutrons produced first at p-p. Fig.6. See text for details.

See also results from Kappl & Winkler JCAP 2014



Il) Accounting for ISM galactic propagation uncertainties for Cosmic Rays
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B/C from PAMELA and AMS-02; Sets the time scale for CRs to
diffuse away from the galactic disk. Also sets constraints on the
combination of convection and re-acceleration.
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Ill) Dealing with Solar Modulation Uncertainties

Strauss et. al ApdJd 2011

There IS ChargeofDependence

Figure 7. Three-dimensional spatial representation of the particle trajectories shown in Figure 1. Two representative particle trajectories (black and gray lines) are
shown for the A > 0 (left panel) and A < O (right panel) HMF polarity cycles. In the A < 0 cycle, the pseudo-particles (galactic electrons) are transported mainly
toward higher latitudes, while in the A > 0 cycle, the particles remain confined to low latitudes and drift outward mainly along the HCS. This illustration is consistent

with the results of galactic electrons shown in the previous figure.
Drifts Can NOT be ignored e PANELA, Adriani et al, 2013
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Let the CR archival Data
tell us how the CR fluxes
have been modulated:
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Il) & Ill) Cross-checking every time with all the PROTON data;
monthly AND total (i.e ISM & Solar Modulation):
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Constraining the form of the Modulation potential and the ISM p spectrum
In a recursive mannetr.




Combining all uncertainties together and
marginalizing over them:
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We do get Positive Potential Signal of Stoch. Accel. of Secondaries from

antiproton/proton ratio at energies above 100 GeV:
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See also Di Mauro et al. JCAP 2014
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°10 Variations between SNRs. For example

if nearby SNRs are efficient accelerators
of secondaries, but have low abundan-
ces of intermediate mass nuclei, then

0.01

the connection between the B/C ratio

pbar/p could be weakened.



e Production and stochastic acceleration of secondaries in SNRs is a likely
source of high energy hard secondary CR spectra

e The amplitude of that “additional” component is not well understood
e Using the CR secondary/primary spectra we can probe it

e From B/C we have been able to place some upper bound on the
contribution of the stoch. accel. secondaries

. On the antiproton/proton ratio we find an increase/hardening of the
ctrum omared z‘o heore j a/ exeptt/on above OO aeV
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Thank you



Why the *Rise™ of the positron fraction is interesting:
| For all *primary *CRSs:
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