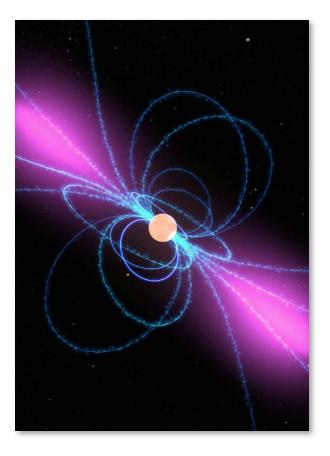

NEARBY PULSARS AND THE COSMIC RAY POSITRON EXCESS

Dan Hooper – Fermilab and the University of Chicago TeV Particle Astrophysics Workshop, Columbus August 9, 2017

(Based on work with Ilias Cholis, Ke Feng and Tim Linden)

The Cosmic Ray Positron Excess

 In 2008, PAMELA reported a surprisingly large quantity of positrons in the cosmic ray spectrum, now confirmed with much greater precision by AMS



Where Do The Excess Positrons Come From?

- The main contribution to the positron flux was anticipated to be that generated by cosmic ray interactions with gas in the ISM, yielding positrons through charged pion decay (*ie. "secondary" positrons*); this cannot account for the observed positrons
- Instead, three basic ideas have been proposed to account for the excess positrons:
 - 1) Annihilating or decaying dark matter particles
 - 2) The acceleration of secondary positrons within cosmic-ray sources (*ie.* supernova remnants)
 - 3) Nearby *primary* sources of high-energy positrons (*ie.* pulsars)

Cosmic Ray Positrons From Pulsars

- Shortly after the PAMELA excess was reported, it was suggested that the positrons might originate from pulsars
- Pulsars are rapidly spinning neutron stars, which gradually convert their rotational kinetic energy into radio, X-ray, and gamma-ray emission, and into e⁺e⁻ pairs
- Newly formed pulsars typically exhibit periods on the order of ~0.01-0.1 second, although most observed pulsars have higher periods (between ~0.1 and a few seconds)
- The rate of a pulsar's spin-down evolution (and power) depends on the strength of its magnetic field (which transfers rotational kinetic energy into radiation via magnetic dipole braking)

DH, Blasi, Serpico, PRD, arXiv:0810.1527; Yuksel, Kistler, PRL, arXiv:0810.2784 (see also Zhang, Cheng, A&A, 2001; Grimani, A&A, 2007)

Pulsars Emission Models

- Considerable research activity has been directed toward understanding exactly how pulsars generate their observed emission
- There are a number of basic elements that are found across a wide range of proposed models:
 - -Electrons are accelerated by the strong magnetic fields, somewhere in the magnetosphere (the location is model dependent)
 - -These electrons then induce electromagnetic cascades through the emission of curvature radiation
 - -This results in the production of photons with energies above the threshold for pair production in the strong magnetic field
 - -These electrons and positrons then escape the magnetosphere through open field lines, or after reaching the pulsar wind
- There is no consensus on what fraction of a pulsar's power is likely to go into the production of energetic e⁺e⁻ pairs
- As high as ~20-30% of the energy budget? Or perhaps ~0.01%?

Which Pulsars Contribute to the Positron Flux?

Consider the standard cosmic-ray transport equation:

$$\frac{\partial}{\partial t}\frac{dn_e}{dE_e}(E_e, r, t) = \vec{\nabla} \cdot \left[D(E_e)\vec{\nabla}\frac{dn_e}{dE_e}(E_e, r, t) \right] + \frac{\partial}{\partial E_e} \left[\frac{dE_e}{dt}(r)\frac{dn_e}{dE_e}(E_e, r, t) \right] + \delta(r)Q(E_e, t)$$

Which Pulsars Contribute to the Positron Flux?

Consider the standard cosmic-ray transport equation:

$$\frac{\partial}{\partial t} \frac{dn_e}{dE_e}(E_e, r, t) = \vec{\nabla} \cdot \begin{bmatrix} D(E_e) \vec{\nabla} \frac{dn_e}{dE_e}(E_e, r, t) \end{bmatrix} + \frac{\partial}{\partial E_e} \begin{bmatrix} \frac{dE_e}{dt}(r) \frac{dn_e}{dE_e}(E_e, r, t) \end{bmatrix} + \delta(r)Q(E_e, t)$$
Diffusion: $D(E_e) = D_0 E_e^{\delta}$
Energy Losses: $-\frac{dE_e}{dt}(r) = \sum_i \frac{4}{3}\sigma_T \rho_i(r)S_i(E_e) \left(\frac{E_e}{m_e}\right)^2 + \frac{4}{3}\sigma_T \rho_{\text{mag}}(r) \left(\frac{E_e}{m_e}\right)^2$
 $\equiv b(E_e, r) \left(\frac{E_e}{\text{GeV}}\right)^2$

Injection Spectrum: $Q(E_e,t) = \delta(t)Q_0E^{-\alpha}\exp(-E_e/E_c)$ — (burst-like approximation)

Which Pulsars Contribute to the Positron Flux?

The solution to this equation is as follows:

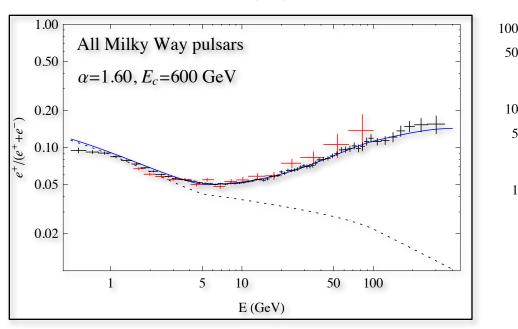
$$\frac{dn_e}{dE_e}(E_e, r, t) = \frac{Q_0 E_0^{2-\alpha}}{8\pi^{3/2} E_e^2 L_{\rm dif}^3(E_e, t)} \exp\left[\frac{-E_0}{E_c}\right] \exp\left[\frac{-r^2}{4L_{\rm dif}^2(E_e, t)}\right]$$

where

$$L_{\rm dif}(E_e, t) \equiv \left[\frac{D_0}{b(E_e/{\rm GeV})^{1-\delta}(1-\delta)} \left(1 - (1 - E_e bt)^{1-\delta}\right)\right]^{1/2}$$

The sources that make the maximum contribution to the local positron flux are those located at a distance of $r \sim 2.4 L_{dif}$, which for ISM-like diffusion parameters yields:

$$r \sim 2.4 \ L_{\rm dif} \sim 100 \ {\rm pc} \ \left(\frac{t}{10^5 \ {\rm yr}}\right) \left(\frac{E_e}{100 \ {\rm GeV}}\right)^{0.7}$$


Conclusion: The pulsars which contribute most to the local positron flux are ~10⁵ years old and are located at a distance of ~100 pc

Cosmic Ray Positron^{0.50} ^{0.50} ⁴ ⁴ ⁵⁰, E_c=600 G ⁶ ⁶ ⁶ ⁶ ⁶ ⁶ ¹⁵⁰ ⁶ ⁶ ⁶ ¹⁵⁰ ⁶ ⁶ ⁶ ¹⁵⁰ ¹⁵⁰

 From these considerations, there are two known pulsars which stand out as the strongest potential sources of ~100 GeV cosmic-ray positrons:

Geminga, age~370,000 yrs, distance~250 pc **B0656+14** (*ie*. monogem), age~110,000 yrs, distance~280 pc

 If ~10-20% of the spin-down power of these pulsars is transferred into pairs, they could plausibly dominate the observed positron spectrum

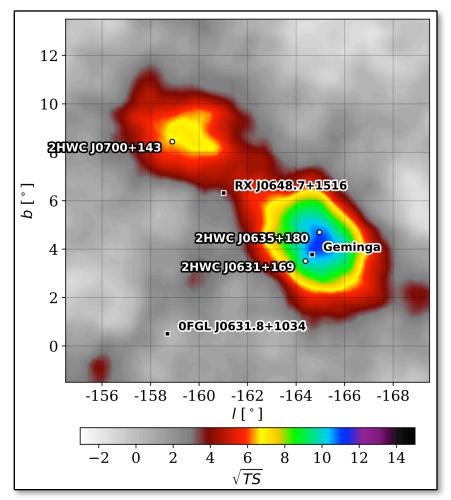
E (GeV)

Dan Hooper – Nearby Pulsars and the Positron Excess

All Milky Way pulsars

100

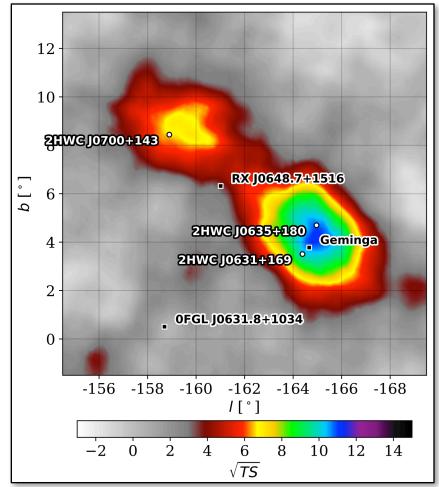
5(


1(

 $e^+ + e^- E^3 x$ diff. flux $\text{GeV}^2(m^2 \text{ s sr})^{-1}$

DH, Blasi, Serpico, PRD, arXiv:0810.1527; Yuksel, Kistler, PRL, arXiv:0810.2784; Cholis, DH, PRD, arXiv:1304.1840

VHE Gamma-Ray Observations of Geminga

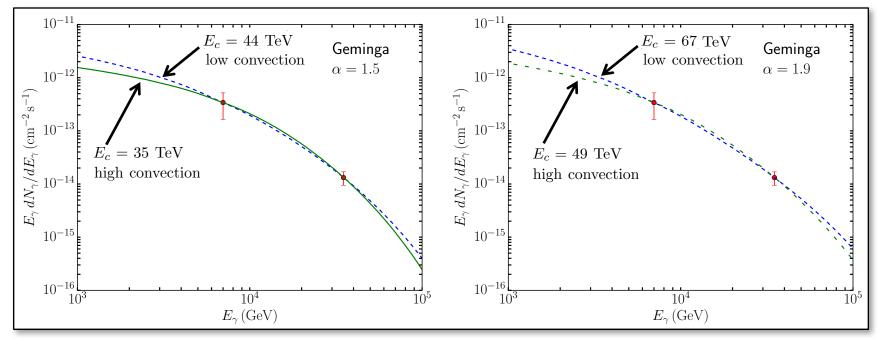

- Milagro detected VHE emission from Geminga and reported the "definitive detection of extended emission" from this source, with a full-width-half-max of 2.6^{+0.7}_{-0.9} degrees
- Very recently, the HAWC Collaboration confirmed Milagro's detection of Geminga, and its spatial extension, finding a radius of ~2°
- Furthermore, HAWC also reports ~2° extended emission from the pulsar B0656+14 (2HWC J0700+143), not detected by Milagro (or by Fermi)

HAWC Collaboration, arXiv:1702.02992

What Produces These Gamma Rays?

- The spatial extension of this emission indicates that the observed gamma rays *do not originate from the pulsar itself*, but from a surrounding region several parsecs in extent
- The only diffuse emission mechanisms that can produce such high-energy photons are inverse Compton scattering and pion production
- A pion production origin would require an implausibly large quantity of ~10² TeV protons (>10⁴⁶ erg), which would have to somehow be confined to the region for >10⁵ years
- In light of these considerations, inverse Compton scattering is almost certainly responsible for this emission

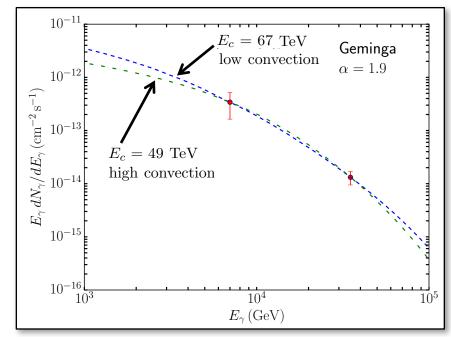
HAWC Collaboration, arXiv:1702.02992


HAWC Measurements Are Essential To Solving The Mystery Of The Positron Excess

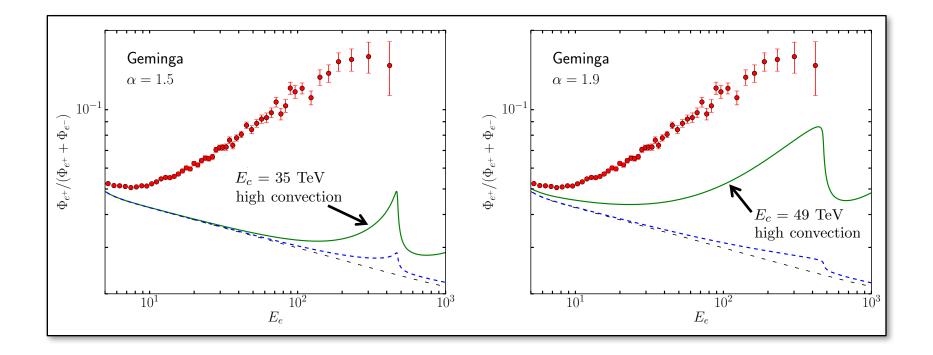
- When a very high energy electron is injected into this environment, it emits the majority of its energy as Inverse Compton emission (along with a similar, but likely smaller quantity as synchrotron)
- The results of HAWC (and Milagro) thus provide us with a direct measurement of the energy that Geminga and B0656+14 are currently injecting into very high-energy e⁺e⁻ pairs (as well as information pertaining to the spectral shape of these pairs)

Main Idea: The spatial extension of Geminga and B0656+14 allow us to measure the critically important (and until now highly uncertain) fraction of these pulsars' spindown power that goes into the production of energetic e⁺e⁻ pairs

Implications of HAWC and Milagro for the Positron Excess


- For a given spectrum of injected pairs, we calculate the resulting ICS spectrum (including all Klein-Nishina corrections), and use this to constrain the normalization, spectral index (α), and energy cutoff (E_c) of the injected spectrum of e⁺e⁻ pairs
- The VHE gamma-ray fluxes are best fit by $\alpha \sim 1.5$ -2.0 and $E_c \sim 35$ -70 TeV
- In these best-fit models, between 7-29% of Geminga's current spindown power goes into e⁺e⁻ pairs – *similar to that required to generate the positron excess!*

DH, I. Cholis, T. Linden, K. Feng, arXiv:1702.08436


The Role Of Convection

- The angular extension of the emission observed by HAWC indicates that diffusion is inefficient for VHE electrons/positrons in the parsecs surrounding these pulsars
- Lower energy leptons cool more slowly, and are likely to escape this region, perhaps via convection or through energy-independent diffusion
- We remain agnostic about how exactly this occurs, and simply parameterize the combination of these effects by a convection velocity
- This quantity impacts the shape of the gamma-ray spectrum, and when we take into account the spectral slope reported by HAWC (-2.23±0.08), we find that a sizable convection velocity is required, $v_c \sim 100-500 \text{ km/s}$
- In these plots, "high convection" refers to v_c~230 km/s × (r_{region}/5 pc) – focus your attention on these curves

Implications of HAWC and Milagro for the Positron Excess

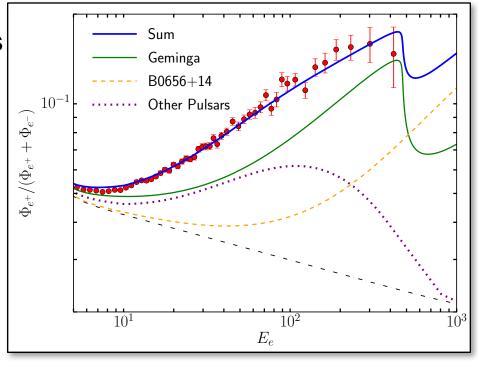
- We can now use this information to calculate the contribution from Geminga to the local positron flux
- Across the range of models that provide a good fit to the HAWC and Milagro data, Geminga contributes non-negligibly to the observed excess

Main Uncertainties

ICS vs Synchrotron

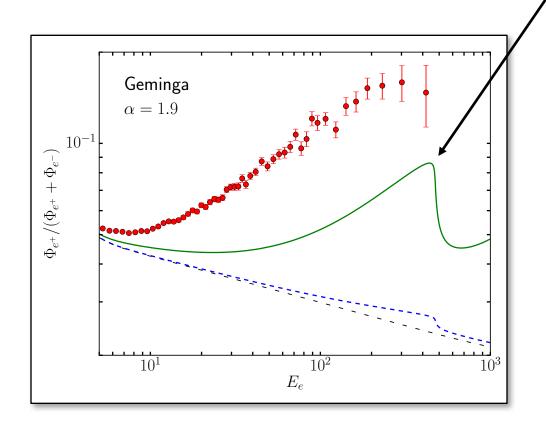
- The fraction of energy in e⁺e⁻ pairs goes into synchrotron rather than ICS is an uncertainty in our calculations (we adopted what we think are reasonable parameters: B=3 μ G, ρ_{star} =0.60 eV/cm³, ρ_{IR} =0.60 eV/cm³, and ρ_{UV} =0.10 eV/cm³)
- Over a reasonable range of these parameters, we could plausibly change the net result by up to a factor of roughly ~2 (either way)

The Time Profile of Geminga's Emission


- HAWC and Milagro measure the energy in ICS today, and thus are sensitive to the pairs that were injected over the past ~10⁴ years
- In contrast, the positrons reaching the Solar System today were injected much longer ago, when the pulsar was young (~10⁵ years ago)
- In our calculation, we adopt the standard magnetic dipole braking model with a spindown timescale of 10⁴ years
- By varying our choice of this parameter, we could plausibly change the net result by an order one factor

Positrons From Geminga, B0656+14, and Other, More Distant Pulsars

- We have the most information about Geminga, and there is still an order one uncertainty as to its contribution to the local positron flux
- Larger uncertainties apply to B0656+14 and other pulsars
- That being said, can make a reasonable estimate for the total contribution


Positrons From Geminga, B0656+14, and Other, More Distant Pulsars

- We have the most information about Geminga, and there is still an order one uncertainty as to its contribution to the local positron flux
- Larger uncertainties apply to B0656+14 and other pulsars
- That being said, can make a reasonable estimate for the total contribution
- In this figure, we have assumed that all pulsars inject e⁺e⁻ pairs with the
- same efficiency and spectrum as Geminga, and adopted $\tau \sim 4.3 \times 10^3$ years and a birth rate of 2 new pulsars per century throughout the Milky Way (adopting the Lorimer *et al.* spatial distribution)
- These assumptions might not be precisely correct, but this shows that pulsars very plausibly generate the entire excess, and very likely provide the dominant contribution

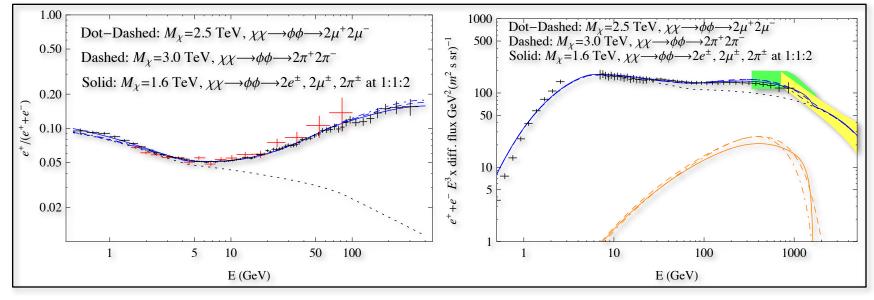
A Note On Positron Spectral Features

- A great deal is often made about "edges" and other spectral features that might appear in the positron spectrum; such features are sometimes called a "smoking gun" for dark matter annihilation or decay
- In fact, a nearby pulsar could very plausibly generate an edge-like feature, at an energy of $E \sim I/bt_{aqe}$ (which for Geminga is at ~350-700 GeV)

Summary

- Recent observations of Geminga and B0656+14 by HAWC provide a determination of the flux of very high-energy e⁺e⁻ pairs that is currently being injected by these pulsars; equivalent to ~7-29% of the total current spindown power
- The is a critical quantity, and was previously almost entirely unknown
- This new information indicates that pulsars generate an order one fraction of the positron excess, and are very likely to be responsible for the majority (or entirety) of this signal
- There is still room in the uncertainties for other contributions to the positron flux (*i.e.* dark matter or secondary acceleration), but it is now reasonably clear that pulsars are the main source of the observed positron excess

Personally, I think this is a very exciting result ... regardless of what Science Magazine has to say about it;)

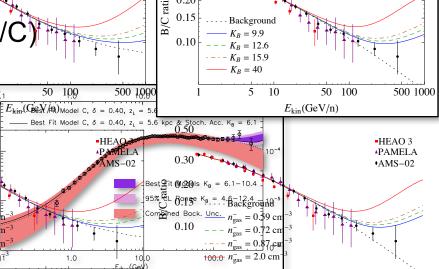

Case weakens for antimatter sign of dark matter

By Edwin Cartlidge | Mar. 6, 2017, 4:00 PM

A long debate over a mysterious surplus of antimatter—and whether it's a sign of dark matter —may be coming to an anticlimactic end. For more than a decade, multiple experiments have found an unexpected excess in the number of high-energy antielectrons, or positrons, in space, and some physicists suggested it could be due to particles of dark matter annihilating one another. Others countered with a more mundane explanation: The positrons come from rapidly rotating neutron stars, or pulsars. Now, a team of theorists has bolstered that more prosaic explanation, showing in detail that pulsars can indeed produce most or all of the excess.

Annihilating Dark Matter and the Positron Excess

- In light of the detailed measurements of the positron fraction from AMS (and of the electron+positron spectrum from Fermi and HESS), few dark matter models can accommodate the data
- Dark matter models that can accommodate the data generally consist of a ~1-3 TeV particle that annihilates to unstable intermediate states, which then decay to electrons, muons and/or charged pions
- Large annihilation cross sections are also required (~10⁻²⁴ to 3x10⁻²³ cm³/s), making constraints from Fermi difficult to evade



Cholis, DH, PRD, arXiv:1304.1840

The Acceleration of Secondary Positrons in Supernova Remnants

- Supernova remnants could generate secondary positrons and then accelerate them before they escape into the ISM
- If secondary positrons are accelerated in supernova remnants, then secondary antiprotons and boron nuclei should be accelerated as well
- Measurements of the boron-to-car bon = B/C and antiproton-to-proton ratios from AMS indicate that secondary acceleration cannot account for the entirety of the positron excess, but may contribuite non-negligibly

HEAO 3
PAMELA
AMS-02

500 1000

P. Blasi, PRL, arXiv:0903.2794; Merts Ch, Sarkar, PRL, arXiv:0905.3152; Cholis, DH, PRD, arXiv:1312.2952; Cholis, DH, Linden, arXiv:1701.04406