

CALET : Summary of the First Two-Years on Orbit

Shoji Torii and <u>Yoichi Asaoka</u> for the CALET collaboration Waseda University

CALET collaboration team

O. Adriani²⁵, Y. Akaike², K. Asano⁷, Y. Asaoka^{9,31}, M.G. Bagliesi²⁹, G. Bigongiari²⁹, W.R. Binns³², S. Bonechi²⁹, M. Bongi²⁵, P. Brogi²⁹, J.H. Buckley³², N. Cannady¹², G. Castellini²⁵, C. Checchia²⁶, M.L. Cherry¹²,
G. Collazuol²⁶, V. Di Felice²⁸, K. Ebisawa⁸, H. Fuke⁸, G.A. de Nalfo¹⁴, T.G. Guzik¹², T. Hams³, M. Hareyama²³, N. Hasebe³¹, K. Hibino¹⁰, M. Ichimura⁴, K. Ioka³⁴, W.Ishizaki⁷, M.H. Israel³², A. Javaid¹², K. Kasahara³¹, J. Kataoka³¹, R. Kataoka¹⁶, Y. Katayose³³, C. Kato²², Y.Kawakubo¹, N. Kawanaka³⁰, H. Kitamura¹⁵, H.S. Krawczynski³², J.F. Krizmanic², S. Kuramata⁴, T. Lomtadze²⁷, P. Maestro²⁹, P.S. Marrocchesi²⁹, A.M. Messineo²⁷, J.W. Mitchell¹⁴, S. Miyake⁵, K. Mizutani²⁰, A.A. Moiseev³, K. Mori^{9,31}, M. Mori¹⁹, N. Mori²⁵, H.M. Motz³¹, K. Munakata²², H. Murakami³¹, Y.E. Nakagawa⁸, S. Nakahira⁹, J. Nishimura⁸, S. Okuno¹⁰, J.F. Ormes²⁴, S. Ozawa³¹, L. Pacini²⁵, F. Palma²⁸, P. Papini²⁵, A.V. Penacchioni²⁹, B.F. Rauch³², F. Stolzi²⁹, I. Takahashi¹¹, M. Takayanagi⁸, M. Takita⁷, T. Tamura¹⁰, N. Tateyama¹⁰, T. Terasawa⁷, H. Tomida⁸, S. Torii^{9,31}, Y. Tunesada¹⁸, Y. Uchihori¹⁵, S. Ueno⁸, E. Vannuccini²⁵, J.P. Wefel¹², K. Yamaoka¹³, S. Yanagita⁶, A. Yoshida¹, K. Yoshida²¹, and T. Yuda⁷

CALET Payload

Kounotori (HTV) 5 Launched on Aug. 19th, 2015 On the Japanese H2-B rocket **Emplaced on JEM-EF port #9** On Aug. 25th, 2015

- Mass: 612.8 kg
- JEM Standard Payload Size: 1850mm(L) × 800mm(W) × 1000mm(H)
- Power Consumption: 507 W (max)
- Telemetry:

Port #9

Medium 600 kbps (6.5GB/day) / Low 50 kbps

CALET Instrument

N	Plastic	Scintillator + PMT + 64anode PMT		CALORIMETER
				CHD-FEC CHD-FEC
	CHD CHD CHD CHD CHD CHD CHD CHD CHD CHD		TASC	MC-FEC IMC IMC-FEC TASC-FEC TASC FEC
	N VAU DA			
		CHD (Charge Detector)	IMC (Imaging Calorimeter)	TASC (Total Absorption Calorimeter)
	Measure			
	Measure Geometry (Material)	(Charge Detector)	(Imaging Calorimeter)	(Total Absorption Calorimeter)
	Geometry	(Charge Detector) Charge (Z=1-40) Plastic Scintillator 14 paddles x 2 layers (X,Y): 28 paddles	(Imaging Calorimeter) Tracking , Particle ID 448 Scifi x 16 layers (X,Y) : 7168 Scifi 7 W layers (3X ₀): 0.2X ₀ x 5 + 1X ₀ x2	(Total Absorption Calorimeter) Energy, e/p Separation 16 PWO logs x 12 layers (x,y): 192 logs log size: 19 x 20 x 326 mm ³

TeVPA, Columbus, OH, 2017

Scientific Goals

Scientific Objectives	Observation Targets	Energy Range
CR Origin and Acceleration	Electron spectrum p Fe individual spectra Ultra Heavy Ions (26 <z≤40) Gamma-rays (Diffuse + Point sources)</z≤40) 	1GeV - 20 TeV 10 GeV - 1000 TeV > 600 MeV/n 1 GeV - 1 TeV
Galactic CR Propagation	B/C and sub-Fe/Fe ratios	Up to some TeV/n
Nearby CR Sources	Electron spectrum	100 GeV - 20 TeV
Dark Matter	Signatures in electron/gamma-ray spectra	100 GeV - 20 TeV
Solar Physics	Electron flux	< 10 GeV
Gamma-ray Transients	Gamma-rays and X-rays	7keV - 20 MeV

Respond to the unresolved questions from the results found by recent observations

Energy Deposit Distribution of All Triggered-Events by Observation for 597 days

Electron, E=3.05 TeV

fully contained even at 3TeV

Fe(Z=26), ∆E=9.3 TeV

energy deposit in CHD consistent with Fe

clear difference from electron shower

Gamma-ray, E=44.3 GeV

no energy deposit before pair production

Preliminary Nuclei Measurements (p, He, $Z \le 8$)

CHD charge resolution (2 layers combined) vs. Z $\sigma_{q} \xrightarrow{0.3}{-}$ Charge separation in B to C : ~7 σ Fe 0.25 C Ne Mg 0.15 C C Mg 0.15 C Mg 0.15 C Mg 0.15 C A Mg 0.15

Charge resolution using multiple dE/dx measurements from the IMC scintillating fibers

Non-linear response to Z^2 is corrected both in CHD and IMC using a model.

Charge resolution combined CHD+IMC

*) Plots are truncated to clearly present the separation.

A clear separation between p, He, up to Z=8, can be seen from CHD+IMC data analysis.

- 15 months of observation from December 1st , 2015 to February 28th, 2017
- subset of total acceptance: acceptance A (fiducial) with S Ω = 416 cm² sr
- Assessment of the systematic errors: IN PROGRESS

Proton Event Selection

- 1) Fully-contained (Acceptance A) event in geometry
- 2) Good tracking (KF)
- 3) High Energy Trigger
- 4) Charge selection Z=1
- 5) Helium rejection cuts
- 6) Electron rejection cuts

Energy Unfolding using an energy overlap matrix from MC data

(A) Fully-contained

Y.Akaike et al., ICRC 2017, PoS 156.

Independent analysis is carried out for heavy nuclei in Z=8-26.

Simple Two Parameter Cut

F_E: Energy fraction of the bottom layer sum to the whole energy deposit sum in TASC
R_E: Lateral spread of energy deposit in TASC-X1
Separation Parameter K is defined as follows:

 $K = \log_{10}(F_E) + 0.5 R_E (/cm)$

Boosted Decision Trees (BDT)

In addition to the two parameters in the left, TASC and IMC shower profile fits are used as discriminating variables.

- Constant and high efficiency is the key point in our analysis.
- Simple two parameter cut is used in the low energy region while the difference in resultant spectrum are taken into account in the systematic uncertainty.

- Geometry Condition: $S\Omega = 570.3 \text{ cm}^2 \text{sr} (55\% \text{ for all acceptance})$
- Live Time: 2015/10/13—2017/03/31 (x 0.84)=> T= <u>3.89 x 10⁷ sec</u>
- Exposure: $S\Omega T = 2.24 \times 10^6 \text{ m}^2 \text{ sr sec} \sim 1/7 \text{ of full analysis for 5 years}$
- Absolute energy scale determined by geomagnetic cutoff energy.

Galactic Latitud

Exposure is limited to low latitude region => |declination| > 60 deg is hardly seen in LE gammaray trigger mode.

Galactic Longitude [deg]

contribution from point sources is not included in the model

Exposure

HE trigger is always ON => Exposure is more uniform than LE trigger.

Vela, Crab and Geminga are identified.

contribution from point sources is not included in the model

CALET UPPER LIMITS ON X-RAY AND GAMMA-RAY COUNTERPARTS OF GW 151226

Astrophysical Journal Letters 829:L20(5pp), 2016 September 20

The CGBM covered 32.5% and 49.1% of the GW 151226 sky localization probability in the 7 keV - 1 MeV and 40 keV - 20 MeV bands respectively. We place a 90% upper limit of 2×10^{-7} erg cm⁻² s⁻¹ in the 1 - 100 GeV band where CAL reaches 15% of the integrated LIGO probability (~1.1 sr). The CGBM 7 σ upper limits are 1.0×10^{-6} erg cm⁻² s⁻¹ (7-500 keV) and 1.8 $\times 10^{-6}$ erg cm⁻² s⁻¹ (50-1000 keV) for one second exposure. Those upper limits correspond to the luminosity of 3-5 $\times 10^{49}$ erg s⁻¹ which is significantly lower than typical short GRBs.

CGBM light curve at a moment of the GW151226 event

Upper limit for gamma-ray burst monitors and Calorimeter

HXM: 7-500 keV

SGM: 50-1000 keV

Figure 2. The sky maps of the 7 σ upper limit for HXM (left) and SGM (right). The assumed spectrum for estimating the upper limit is a typical BATSE S-GRBs (see text for details). The energy bands are 7-500 keV for HXM and 50-1000 keV for SGM. The GW 151226 probability map is shown in green contours. The shadow of ISS is shown in black hatches.

Figure 3. The sky map of the 90% upper limit for CAL in the 1-100 GeV band. A power-law model with a photon index of - is used to calculate the upper limit. The GW 151226 probability map is shown in green contours.

Figure 1. The CGBM light curves in 0.125 s time resolution for the high-gain data (left) and the low-gain data (right). The time is offset from the LIGO trigger time of GW 151226. The dashed-lines correspond to the 5 σ level from the mean count rate using the data of ± 10 s.

Summary and Future Prospects

- □ CALET was successfully launched on Aug. 19, 2015, and the detector is being very stable for observation since Oct. 13, 2015.
- As of Jun.30, 2017, total observation time is 627 days with live time fraction to total time to close 84%. Nearly 409 million events are collected with high energy (>10 GeV) trigger.
- Careful calibrations have been adopted by using "MIP" signals of the non-interacting p & He events, and the linearity in the energy measurements up to 10⁶ MIPs is established by using observed events.
- Preliminary analysis of nuclei, total elections and gamma-rays have successfully been carried out to obtain the energy spectra in the energy range; Protons: 55 GeV~22 TeV, Ne-Fe: 500 GeV~70 TeV, Total electrons: 10 GeV~1 TeV.
- □ Preliminary analysis of UH cosmic-ray flux are done up to Z=40.
- □ CALET's CGBM detected nearly 60 GRBs (~20 % short GRB among them) per year in the energy range of 7keV-20 MeV, as expected. Follow-up observation of the GW events is carried out. (Not reported in this talk)
- □ The so far excellent performance of CALET and the outstanding quality of the data suggest that a 5-year observation period is likely to provide a wealth of new interesting results.

- CALET measures the relative abundances of ultra heavy nuclei through $_{40}$ Zr
- Trigger for ultra heavy nuclei: •
- signals of only CHD, IMC1+2 and IMC3+4 are required

an expanded geometrical acceptance (4000 cm²sr)

Energy threshold depends on the geomagnetic cutoff rigidity

Onboard trigger for UH events

Data analysis

- Event Selection: Vertical cutoff rigidity > 4GV & Zenith Angle < 60 degrees
- Contamination from neighboring charge are determined by multiple-Gaussian function

Relative abundance (Fe=1)

IMC-1+2

Accepted article online 25 APR 2016

Geophysical Research Letters

Relativistic electron precipitation at International Space Station: Space weather monitoring by Calorimetric Electron Telescope

Ryuho Kataoka^{1,2}, Yoichi Asaoka³, Shoji Torii^{3,4}, Toshio Terasawa⁵, Shunsuke Ozawa⁴, Tadahisa Tamura⁶, Yuki Shimizu⁶, Yosui Akaike⁴, and Masaki Mori⁷

¹Space and Upper Atmospheric Sciences Group, National Institute of Polar Research, Tachikawa, Japan, ²Department of Polar Science, School of Multidisciplinary Sciences, SOKENDAI (Graduate University for Advanced Studies), Tachikawa, Japan, ³Research Institute for Science and Engineering, Waseda University, Shinjuku, Japan, ⁴Department of Physics, Waseda University, Shinjuku, Japan, ⁵Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Japan, ⁶Institute of Physics, Kanagawa University, Yokohama, Japan, ⁷Department of Physical Sciences, Ritsumeikan University, Kusatsu, Japan

Abstract The charge detector (CHD) of the Calorimetric Electron Telescope (CALET) on board the International Space Station (ISS) has a huge geometric factor for detecting MeV electrons and is sensitive to relativistic electron precipitation (REP) events. During the first 4 months, CALET CHD observed REP events mainly at the dusk to midnight sector near the plasmapause, where the trapped radiation belt electrons can be efficiently scattered by electromagnetic ion cyclotron (EMIC) waves. Here we show that interesting 5–20 s periodicity regularly exists during the REP events at ISS, which is useful to diagnose the wave-particle interactions associated with the nonlinear wave growth of EMIC-triggered emissions.

Space Weather is now a new topic of the CALET science !!

Relativistic Electron Precipitation

CHD X and Y count rate increase by REP

