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THE ‘DARK MATTER (DM) EXISTS 
AND HERE IS PROOF’ SLIDE

- Rotation curve data 
- Gravitational lensing 
- Large scale structure 
- CMB anisotropies 
- …

- Non-baryonic (dark) 
- Non-relativistic (cold) 
- Has gravitational interactions. 
- Stable (until now?)

Credit: ESA/Planck
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PARTICLE DARK MATTER
- Weak-scale and heavier DM can arise ‘naturally’ in some beyond 

Standard Model (BSM) theories of particle physics. 

- Avenue for exploring signatures of DM at colliders, astrophysical 
probes (indirect detection), underground experiments (direct 
detection). 

- However, in light of stringent constraints, we need BSM cosmology to 
explain current signals with DM or devise new searches for it.  

- Now, DM candidates span a large parameter space in both mass and 
cross-section (not shown here).
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Credit: M. Cirelli



THE WIMP MIRACLE (OR RED 
HERRING?)
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Credit: T. Volansky, Lepton-Photon ‘15



LD2DM SCENARIO
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alternate 
injection 
history of DM
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LD2DM SCENARIO
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- where      is dark radiation and       is a dark photon. 

- Since      is the DM today, we fix it’s mass and cross-section to the best-
fit values that we obtain from fitting the AMS-02 data. The cross-section 
for      is set to the thermal value to ensure the right relic abundance. 

- The decay lifetime,        , of       determines the epoch of energy 
deposition for the LD2DM scenario and is constrained by the CMB 
anisotropy spectrum. 

- Finally, the mass difference between the two species, Δm, is 
constrained by Ly-α forest power structure measurements.
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(a similar, although purely cosmological,  
scenario was proposed among others 
by 1003.0419)



OUTLINE FOR TALK:

- Overview of the positron excess 

- Constraints from astrophysics and cosmology 

- Constraints on the LD2DM scenario 

- Interesting cosmological features in the LD2DM scenario 

- Summary
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“I see men ordinarily more eager to discover a reason for things than 
to find out whether the things are so.”  

— Montaigne*



POSITRON EXCESS: AN OVERVIEW 
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- Before proceeding, let’s take a moment to appreciate how far along 
we have come with the data.



POSITRON EXCESS: AN OVERVIEW 
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“Believe the AMS result” — P. Michelson (for FERMI), AMS Days 
 at CERN, April 2015



POSITRON EXCESS: AN OVERVIEW 
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Preliminary data
Please refer to forthcoming 

AMS publication in PRL

AMS data is precise enough to look into details of 
Electron and Positron spectra separately

Yuan-Hann Chang (for AMS collaboration) talk @ TeVPA ‘17



POSITRON EXCESS: AN OVERVIEW 
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- Before proceeding, let’s take a moment to appreciate how far along 
we have come with the data. 

- In the context of charged cosmic rays, we are entering a new era of 
precision astrophysics where the emphasis is on:  
a) improving our understanding of astrophysical ‘backgrounds’ , 
 
b) updating our current models of propagation in accordance with 
the latest complementary data sets, e.g: galactic magnetic field 
(GMF) models. 

- Thus, armed with latest data for the positron flux and updated 
propagation profiles, we revisited the annihilating DM interpretation 
of the positron excess.



12

- However, it is also very likely that this excess is (atleast partially) 
astrophysical in nature.
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Hooper, Cholis):
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- However, it is also very likely that this excess is (atleast partially) 
astrophysical in nature.  

- Indeed, many in the community have advocated as much (talks by 
Hooper, Cholis):

And many others…
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- We use these ingredients to solve the propagation equation 
numerically in DRAGON* and obtain the total positron flux:

RESULTS * https://github.com/cosmicrays 
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RESULTS
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CONSTRAINTS FROM 
ASTROPHYSICS AND COSMOLOGY
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CONSTRAINTS

CMB constraints
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CONSTRAINTS

CMB constraints

Gamma-rays from 
dwarf galaxies
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D. Gaggero talk 
from today!! 



BEYOND THE THERMAL WIMP 
PARADIGM
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- While deriving the bounds from CMB, there is an implicit 
assumption that the s-wave annihilation cross-section remains 
constant from recombination era to the current epoch.  

- This constraints the cosmological evolution of the DM species.  

- We are interested not only in exploring alternate production 
mechanisms in the early universe, but also to probe effects of 
change in DM characteristics over a cosmological time scale. 

- LD2DM is a simple scenario that realizes the above goal while 
simultaneously explaining the positron excess.



CONSTRAINTS 
ON THE LD2DM SCENARIO
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LD2DM SCENARIO
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- where      is dark radiation and       is a dark photon. 

- Since      is the DM today, we fix it’s mass and cross-section to the best-
fit values that we obtain from fitting the AMS-02 data. The cross-section 
for      is set to the thermal value to ensure the right relic abundance. 

- The decay lifetime,        , of       determines the epoch of energy 
deposition for the LD2DM scenario and is constrained by the CMB 
anisotropy spectrum. 

- Finally, the mass difference between the two species, Δm, is 
constrained by Ly-α forest power structure measurements.
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LD2DM SCENARIO
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�2�2 ! Z 0Z 0 ! 4l
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LD2DM CONSTRAINTS
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- In the framework of LD2DM, DM decays in the late universe (after 
z~30) after the onset of halo formation. 

- Thus, the heavier DM populates the lighter species, with the higher 
cross-section, in the late universe such that the relic abundance 
remains unchanged (we calculate this explicitly!). 

- We use publicly available Mathematica recipes to provide a bound on 
the DM annihilation cross-section by considering the complete shape 
of its ionization history determined by the LD2DM scenario. 

- Such an approach becomes particularly relevant for the LD2DM 
scenario since it has a unique, red-shift dependent, energy-
deposition history.



LIFETIME CONSTRAINTS
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Recipes: 1211.0283, 1506.03811 
https://faun.rc.fas.harvard.edu/epsilon//

- Contraints come from 
annihilation of lighter species and 
not decay of the heavier one! 

https://faun.rc.fas.harvard.edu/epsilon//


ΔM CONSTRAINTS
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- Ly-α forest measurements 
constrain the ‘kick velocity’ 
imparted to       upon decay: 
 
 

- For                       , 
 

- This translates to a mass 
difference     
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INTERESTING COSMOLOGICAL 
FEATURES IN THE LD2DM SCENARIO
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LD2DM FEATURES
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- Kick velocities in the LD2DM scenario are                    , which are 
typical of the maximum circular velocities in dwarf galaxies. Thus, 
decays of the heavier particle would have a visible impact on 
galactic halo substructure.  

- A detailed numerical study could help narrow down the parameter 
space for solving some small scale structure anomalies: “missing 
satellite problem” (not really a problem anymore?) and the ‘too big 
to fail” problem.  

- Moreover, the dark radiation produced in the decays can be 
interpreted as an extra relativistic degree of freedom, which could 
resolve the tension between the CMB and local measurements of  
      and     .   

O(10) km/s

H0 �8
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- An energy injection due to the annihilation of the daughter can 
potentially contribute to the reionization of the universe. However, 
we still need to understand the underlying astrophysics of 
reionization better! 

- Precision measurments from current and future 21-cm astronomy 
experiments like HERA and SKA, especially redshift decomposition 
for EoR progression, can help us probe peculiar energy injection 
signatures arising from scenarios like the LD2DM. 

LD2DM FEATURES



SUMMARY

33

- The positron excess is real, but its origins are still unclear. 

- Biggest takeaway: to narrow down the search for DM in cosmic rays, 
we need to improve our understanding of the astrophysical 
environment.  

- Thermal freeze-out, while simple and elegant, may not be the 
complete story. Alternate production mechanisms may assist in 
searches that employ ‘unconventional’ DM candidates. 

- Assuming a priori that there is only one particle dark matter 
candidate in the Universe may be quite restrictive. If the SM is any 
indication, we should anticipate a rich dark sector as well. In that 
regard, LD2DM may be incorporated as a scenario for a more 
elaborate multi-component sector. 

- Advent of cosmologically motivated models for DM: motivation to 
look for signals in hitherto unexplored epochs. 



EXTRA SLIDES
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CR TRANSPORT: A QUICK PRIMER
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- Cosmic Ray (CR) transport for all species is modelled by a diffusion 
equation:
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CR TRANSPORT: A QUICK PRIMER
Propagation parameters

MODA: 1409.6248 
MODB: 1410.0171

DM density profile

  0905.2228, 1204.3662

- We also adopt a 21-paramter 
model for the galactic magnetic 
field following

⇢(r) =
⇢s

(r/rs)(1 + r/rs)2
NFW profile: (⇢� = 0.3 GeV cm�3)
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TOY MODEL
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GAMMA-RAY CONSTRAINTS

A. Scaffidi et.al. 1604.00744
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GAMMA-RAY CONSTRAINTS

A. Scaffidi et.al. 1604.00744
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“I see men ordinarily more eager to discover a reason for things than 
to find out whether the things are so.”  

— Montaigne*

The Autobiography of Michel Montaigne (1999), Ch: 22 


