Searching for Dark Matter in Distant Galaxies

Nick Rodd

To appear (very soon!) w/ Mariangela Lisanti, Siddharth Mishra-Sharma, and Ben Safdi

TeVPA
9 August 2017
OUTLINE

Galaxy groups (this work)
- 95% containment
- 68% containment
Galaxy groups, no boost
Fermi dwarfs (2016)

Preliminary
Fermi Galaxy Groups
Tully Catalogs, \bar{b}

Thermal relic cross section

Nick Rodd - Searching for Dark Matter in Distant Galaxies
1. GCE and Dwarf limit

Galaxy groups (this work)
95% containment
68% containment
Galaxy groups, no boost
Fermi dwarfs (2016)

Preliminary

Fermi Galaxy Groups
Tully Catalogs, $\bar{b}b$

Thermal relic cross section

$\langle \sigma v \rangle$ [cm3 s$^{-1}$]

m_χ [GeV]
1. GCE and Dwarf limit

2. How to set limits w/ galaxy catalogs

Preliminary

Fermi Galaxy Groups

Tully Catalogs, \bar{b}

Outline

Galaxy groups (this work)
95% containment
68% containment
Galaxy groups, no boost
Fermi dwarfs (2016)

Thermal relic cross section

$\langle \sigma v \rangle$ [cm3 s$^{-1}$]

m_χ [GeV]
OUTLINE

1. GCE and Dwarf limit

2. How to set limits w/ galaxy catalogs

3. Our catalog limits - in Sid’s talk next!

Outline:

1. GCE and Dwarf limit
2. How to set limits w/ galaxy catalogs
3. Our catalog limits - in Sid’s talk next!

Preliminary

Fermi Galaxy Groups

Tully Catalogs, $\bar{b}b$

Thermal relic cross section

m_χ [GeV]

$\langle \sigma v \rangle$ [cm3 s$^{-1}$]
Where should we look?

\[\Phi_{DM} \propto J \sim \int ds \, \rho^2 \]
WHERE SHOULD WE LOOK?

Galactic Center

- Bright but significant backgrounds
- An excess in the data!

NR et al (1402.6703)
See also NR et al (1604.01026) and many more!

\[\Phi_{DM} \propto J \sim \int ds \rho^2 \]
WHERE SHOULD WE LOOK?

Galactic Center
- Bright but significant backgrounds
- An excess in the data!

NR et al (1402.6703)
See also NR et al (1604.01026) and many more!

Milky Way Dwarfs
- Dim but low backgrounds
- Many discovered recently!

Fornax
Sextans

See Fermi-LAT Collaboration: 1310.0828, 1503.02641, 1611.03184

\[\Phi_{DM} \propto J \sim \int ds \rho^2 \]
WHERE SHOULD WE LOOK?

Nick Rodd - Searching for Dark Matter in Distant Galaxies
Where should we look?

Galaxies and Clusters

- Even dimmer than Dwarfs
- But there are many more!

\[\Phi_{DM} \propto J \sim \int ds \rho^2 \]

Nick Rodd - Searching for Dark Matter in Distant Galaxies
Building a Map Of Extragalactic DM

- **Starting point:** a catalog of galaxies, e.g. 2MASS

![Map of Extragalactic DM](image)

Huchra et al 1108.0669

- **Basic problem:** How do we go from galaxies to DM?
Building a Map Of Extragalactic DM

\[J = (1 + b_{sh}) \int \rho^2 (s, \Omega) \, ds \, d\Omega \]

\[\rho_{NFW}(r) = \frac{\rho_s}{r/r_s(1 + r/r_s)^2} , \quad c_{\text{vir}} \equiv r_{\text{vir}}/r_s \]

\[\Rightarrow J \sim (1 + b_{sh}) \frac{M_{\text{vir}} c_{\text{vir}}^3}{d_A^2 [z]} \]

- Need all 4 for every galaxy
- \(z \) often well known, others less so

Nick Rodd - Searching for Dark Matter in Distant Galaxies
Building a Map Of Extragalactic DM

\[\Rightarrow J \sim (1 + b_{sh}) \frac{M_{\text{vir}} c_{\text{vir}}^3}{d_A^2[z]} \]

DarkSky N-body Simulation

4096^3 \text{ particles}; 400 \text{ Mpc/h box}; m \sim 7.6 \times 10^7 M_\odot

Skillman et al 1407.2600; darksky.slac.stanford.edu

Nick Rodd - Searching for Dark Matter in Distant Galaxies
Building a Map Of Extragalactic DM

\[J \sim (1 + b_{\text{sh}}) \frac{M_{\text{vir}} c_{\text{vir}}^3}{d_A^2 [z]} \]

Luminosity-mass relation
DarkSky-400 simulation

Inferred vs true mass
DarkSky-400 simulation

Nick Rodd - Searching for Dark Matter in Distant Galaxies
Building a Map Of Extragalactic DM

$$\Rightarrow J \sim \left(1 + b_{sh}\right) \frac{M_{\text{vir}} c_{\text{vir}}^3}{d_A^2 [z]}$$

Concentration-mass relations

Nick Rodd - Searching for Dark Matter in Distant Galaxies
Building a Map Of Extragalactic DM

\[J \sim (1 + b_{sh}) \frac{M_{\text{vir}} c_{\text{vir}}^3}{d_A^2 [z]} \]

Boost model we use (1507.08656)

Much larger boosts now disfavoured (1107.1916)
Building a Map Of Extragalactic DM

- Can now build up a full map of extragalactic DM
Building a Map Of Extragalactic DM

- Use these to perform a stacked template fit analysis:
Conclusion

- Clusters are a powerful probe of DM annihilation
- I’ve shown how to go from galaxies, to a DM map, to a limit
- Sid will take over and show our application to the Fermi data
Backup Slides
J-factor Scaling

- For extragalactic halos an excellent approximation is:

\[
J_{\text{NFW}} = (1 + b_{sh}[M_{\text{vir}}]) \int dsd\Omega \rho_{\text{NFW}}^2(s, \Omega)
\]

\[
\approx (1 + b_{sh}[M_{\text{vir}}]) \frac{1}{d_A^2(z)} \int_V dV' \rho_{\text{NFW}}^2(r')
\]

\[
= (1 + b_{sh}[M_{\text{vir}}]) \frac{M_{\text{vir}}c_{\text{vir}}^3 \rho_c \Delta_c(z)}{9d_A^2(z)}
\]

\[
\times \left[1 - \frac{1}{(1 + c_{\text{vir}})^3}\right] \left[\ln(1 + c_{\text{vir}}) - \frac{c_{\text{vir}}}{1 + c_{\text{vir}}}\right]^{-2}
\]

\[
\sim (1 + b_{sh}) \frac{M_{\text{vir}}c_{\text{vir}}^3}{d_A^2(z)}
\]

Same scaling holds for Burkert profile
Injected Signal

$m_\chi = 10$ GeV

$m_\chi = 100$ GeV

$m_\chi = 10$ TeV

(\sigma v)_{\text{inj}} / \text{cm}^3 \text{s}^{-1}

(\sigma v)_{\text{rec}} / \text{cm}^3 \text{s}^{-1}

Location 1

Location 2

\(m_\chi \) = 10 GeV

\(m_\chi \) = 100 GeV

\(m_\chi \) = 10 TeV

(\sigma v)_{\text{rec}} / \text{cm}^3 \text{s}^{-1}

Nick Rodd - Searching for Dark Matter in Distant Galaxies
Elephants

$m_\chi = 10 \text{ GeV}$

$m_\chi = 100 \text{ GeV}$

$m_\chi = 10 \text{ TeV}$

Location 1

Location 2

Location 3

Location 4

N_h
Impact of Systematic Modeling

Preliminary
Template Fitting

DM Annihilation

p7v6 Diffuse Model

Fermi Bubbles

Isotropc Emission

Fix a value

Scan to find best fit values in each energy bin

Simulated Fermi data

Fit implemented with NPTFit:
github.com/bsafdi/NPTFit/

Nick Rodd - Searching for Dark Matter in Distant Galaxies
Template Fitting

DM Annihilation

p7v6 Diffuse Model

Fermi Bubbles

Isotropy Emission

Fix a value

Scan to find best fit values in each energy bin

Simulated Fermi data

Fit implemented with NPTFit:
github.com/bsafdi/NPTFit/
Template Fitting

- DM Annihilation
- p7v6 Diffuse Model
- Fermi Bubbles
- Isotropc Emission

Example Output

Simulated Fermi data
Fit implemented with NPTFit: Rodd et al, Astron. J. 153 (2017) 253; github.com/bsafdi/NPTFit/

Nick Rodd - Searching for Dark Matter in Distant Galaxies
Searching for Extragalactic DM

DM Annihilation

Fermi Bubbles

Isotropic Emission

p7v6 Diffuse Model

Example Output

Scan to find best fit values in each energy bin

Fix a value

Simulated Fermi data
Fit implemented with NPTFit:
github.com/bsafdi/NPTFit/

Nick Rodd - Searching for Dark Matter in Distant Galaxies
Searching for Extragalactic DM

- Limit set in DarkSky + Fermi Monte Carlo on 100 GeV DM to bs

- Limit is dominated by the top ~ 100 halos when all added
Building a Map Of Extragalactic DM

\[J \approx (1 + b_{sh}) \frac{M_{\text{vir}} c_{\text{vir}}^3}{d(z)^2} \]

Nick Rodd - Searching for Dark Matter in Distant Galaxies
Dark Matter at Fermi: Profile Likelihood

- Bin the data in energy (i) and spatial pixels (p): \(\{l, b, E\} \Rightarrow n^p_i \)
- Describe with model parameters: \(\theta = \{\psi_{\text{DM}}, \lambda_{\text{nuisance}}\} \)
- Construct the Poisson likelihood in each energy bin \(i \)
 \[
 p_i(d_i|\theta_i) = \prod_p \frac{\mu^p_i(\theta_i)^n^p_i e^{-\mu^p_i(\theta_i)}}{n^p_i!}
 \]
- Eliminate the nuisance parameters by profile likelihood
 \[
 \log p_i(d_i|\psi_i) = \max_{\lambda_i} \log p_i(d_i|\theta_i)
 \]
- Likelihood of a model depends on the injected galactic and extragalactic flux
 \[
 \log p(d|M, \{\langle\sigma v\rangle, m_{\text{DM}}\}) = \sum_{i=0}^{39} \log p_i(d_i|I^i_{\text{cat}})
 \]
- From this define a TS, from which limits can be set
- Implement analysis using NPTFit (1612.03173)
Fermi Data Details

Simulated Monte Carlo base on: 423 weeks of Fermi-LAT data
40 log spaced energy bins, from 200 MeV - 2 TeV
UltracleanVeto BestPSF
Background Mismodelling

- Models of the gamma ray sky do not explain the data to the level of Poisson noise, e.g. below for GCE from NR et al 1604.01026

- These issues are much more pronounced for larger ROIs

- As modelling of the sky improves, will be able to safely use larger ROIs and thereby more data

Nick Rodd - Searching for Dark Matter in Distant Galaxies
Wimp Miracle

- We know the amount of DM
- If it was once in thermal EQ with SM, then:

\[
\text{Amount of DM} \propto \frac{1}{\langle \sigma v \rangle}
\]

- Putting in numbers find:

\[
m_\chi \sim \text{EW} \ (\approx \text{TeV})
\]

\[
\langle \sigma v \rangle \sim 10^{-26} \ \text{cm}^3/\text{s}
\]

- Suggestive, provides a benchmark!
Wimp Miracle

- We know the amount of DM
- If it was once in thermal EQ with SM, then:

\[
\text{Amount of DM} \propto \frac{1}{\langle \sigma v \rangle}
\]

- Putting in numbers find:

\[
m_\chi \sim \text{EW} \ (\approx \text{TeV})
\]
\[
\langle \sigma v \rangle \sim 10^{-26} \text{ cm}^3/\text{s}
\]
- Suggestive, provides a benchmark!

Nick Rodd - Searching for Dark Matter in Distant Galaxies
Wimp Miracle

- We know the amount of DM
- If it was once in thermal EQ with SM, then:

 \[\text{Amount of DM} \propto \frac{1}{\langle \sigma v \rangle} \]

- Putting in numbers find:

 \[m_\chi \sim \text{EW} \ (\approx \text{TeV}) \]
 \[\langle \sigma v \rangle \sim 10^{-26} \text{ cm}^3 / \text{s} \]

- Suggestive, provides a benchmark!
WHERE SHOULD WE LOOK?

\[\Phi(l, b) = \frac{\langle \sigma v \rangle}{8\pi m_\chi^2} \int_{E_{\text{min}}}^{E_{\text{max}}} \frac{dN_\gamma}{dE} \, dE \times \int_{\text{los}} \rho_{\text{DM}}^2(r) \, ds \]

\[\langle \sigma v \rangle \]

\[\frac{dN_\gamma}{dE} \]

\[\rho_{\text{DM}}^2(r) \]

\[\text{“Particle Physics Factor”} \]

\[\text{“J-Factor”} \]

Nick Rodd - Searching for Dark Matter in Distant Galaxies
Where should we look?

\[
\Phi(l, b) = \frac{\langle \sigma v \rangle}{8\pi m^2_\chi} \int_{E_{\text{min}}}^{E_{\text{max}}} \frac{dN_\gamma}{dE} dE \times \int_{\text{los}} \rho_{\text{DM}}^2(r) ds
\]

\[
\langle \sigma v \rangle = 10^{-26} \text{ cm}^3/\text{s}
\]

\[
m_\chi = 100 \text{ GeV}
\]

\[
dN_\gamma/dE = 2\delta(E - m_\chi) \ (\chi\chi \rightarrow \gamma\gamma)
\]

\[
\Rightarrow \text{PP} \approx 10^{-31} \text{ cm}^3/\text{s}/\text{GeV}^2
\]
Where should we look?

\[
\Phi(l, b) = \frac{\langle \sigma v \rangle}{8\pi m_{\chi}^2} \int_{E_{\text{min}}}^{E_{\text{max}}} \frac{dN_\gamma}{dE} dE \times \int_{\text{los}} \rho_{\text{DM}}(r) ds
\]

\[
\frac{\gamma}{\text{cm}^2/\text{s}}
\]

“Particle Physics Factor”

“J – Factor”

\[
\langle \sigma v \rangle = 10^{-26} \text{ cm}^3/\text{s}
\]

\[
m_{\chi} = 100 \text{ GeV}
\]

\[
dN_\gamma/dE = 2\delta(E - m_{\chi}) \ (\chi\chi \rightarrow \gamma\gamma)
\]

\[
\Rightarrow \text{PP} \approx 10^{-31} \text{ cm}^3/\text{s}/\text{GeV}^2
\]

E.g. Segue 1:

\[
J \approx 10^{20} \text{ GeV}^2/\text{cm}^5
\]
WHERE SHOULD WE LOOK?

\[\Phi(l, b) = \frac{\langle \sigma v \rangle}{8\pi m_{\chi}^2} \int_{E_{\text{min}}}^{E_{\text{max}}} \frac{dN_\gamma}{dE} dE \times \int_{\text{los}} \rho_{DM}^2(r) ds \]

\[\langle \sigma v \rangle = 10^{-26} \text{ cm}^3/\text{s} \]
\[m_{\chi} = 100 \text{ GeV} \]
\[dN_\gamma/dE = 2\delta(E - m_{\chi}) (\chi\chi \rightarrow \gamma\gamma) \]
\[\Rightarrow PP \approx 10^{-31} \text{ cm}^3/\text{s/GeV}^2 \]

\[J \approx 10^{20} \text{ GeV}^2/\text{cm}^5 \]
\[\Rightarrow \Phi \approx 10^{-11} \gamma/\text{cm}^2/\text{s} \]
Where should we look?

\[\Phi(l, b) = \frac{\langle \sigma v \rangle}{8\pi m_\chi^2} \int_{E_{\text{min}}}^{E_{\text{max}}} \frac{dN_\gamma}{dE} dE \times \int_{\text{los}} \rho_{\text{DM}}^2(r) ds \]

\[\langle \sigma v \rangle = 10^{-26} \text{ cm}^3/\text{s} \]
\[m_\chi = 100 \text{ GeV} \]
\[\frac{dN_\gamma}{dE} = 2\delta(E - m_\chi) \ (\chi\chi \to \gamma\gamma) \]
\[\Rightarrow PP \approx 10^{-31} \text{ cm}^3/\text{s}/\text{GeV}^2 \]

\[J \approx 10^{20} \text{ GeV}^2/\text{cm}^5 \]
\[\Rightarrow \Phi \approx 10^{-11} \gamma/\text{cm}^2/\text{s} \]

If we had a 1 m2 space based telescope operate for 10 years:

\[(10^{-11} \gamma/\text{cm}^2/\text{s}) \times (10^4 \text{ cm}^2) \times (10 \times \pi \times 10^7 \text{ s}) \approx 30 \gamma \]
Where should we look?

- Fermi Large Area Telescope (LAT): pair-conversion telescope consisting of layers of tungsten and silicon on top of a calorimeter
- Launched June 2008, still running
- Narrowly avoided hitting a Soviet spy satellite in mid 2013
- Sensitive to EW scale thermal DM!
- Rest of talk: where should we point?