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The Cosmological Principle

• The Universe is 
Homogeneous and Isotropic 
on large scales 

• Therefore the energy density 
ad pressure are functions of 
time only
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Gravity is Non-Linear

• We like to separate scales when doing physics 
problems (e.g. what happens here, stays here) 

• Non-linear physics can mix up scales - power 
transferred between scales is often referred to as 
cascades or inverse-cascades 

• The Averaging Problem : When we talk about the 
expansion of the Universe on the largest of scales, is 
there any contribution from smaller scales?



Gravity is Non-Linear

• We like to separate scales when doing physics 
problems (e.g. what happens here, stays here) 

• Non-linear physics can mix up scales - power 
transferred between scales is often referred to as 
cascades or inverse-cascades 

• The Averaging Problem : When we talk about the 
expansion of the Universe on the largest of scales, is 
there any contribution from smaller scales?

Comments on Backreaction

Stephen R. Green

1
and Robert M. Wald

2

1 Perimeter Institute for Theoretical Physics

31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada
2 Enrico Fermi Institute and Department of Physics, The University of Chicago

5640 South Ellis Avenue, Chicago, Illinois 60637, USA

E-mail: sgreen@perimeterinstitute.ca and rmwa@uchicago.edu

Abstract. We respond to the criticisms of a recent paper of Buchert et al.
ar

X
iv

:1
50

6.
06

45
2v

2 
 [g

r-q
c]

  3
0 

O
ct

 2
01

5

1506.06452



Gravity is Non-Linear

• We like to separate scales when doing physics 
problems (e.g. what happens here, stays here) 

• Non-linear physics can mix up scales - power 
transferred between scales is often referred to as 
cascades or inverse-cascades 

• The Averaging Problem : When we talk about the 
expansion of the Universe on the largest of scales, is 
there any contribution from smaller scales?

Comments on Backreaction

Stephen R. Green

1
and Robert M. Wald

2

1 Perimeter Institute for Theoretical Physics

31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada
2 Enrico Fermi Institute and Department of Physics, The University of Chicago

5640 South Ellis Avenue, Chicago, Illinois 60637, USA

E-mail: sgreen@perimeterinstitute.ca and rmwa@uchicago.edu

Abstract. We respond to the criticisms of a recent paper of Buchert et al.
ar

X
iv

:1
50

6.
06

45
2v

2 
 [g

r-q
c]

  3
0 

O
ct

 2
01

5

1506.06452
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The recent analysis of the Planck results reveals a tension between the best fits for (⌦m0, H0)
derived from the cosmic microwave background or baryonic acoustic oscillations on the one hand,
and the Hubble diagram on the other hand. These observations probe the universe on very di↵erent
scales since they involve light beams of very di↵erent angular sizes, hence the tension between
them may indicate that they should not be interpreted the same way. More precisely, this letter
questions the accuracy of using only the (perturbed) Friedmann-Lemâıtre geometry to interpret all
the cosmological observations, regardless of their angular or spatial resolution. We show that using
an inhomogeneous “Swiss-cheese” model to interpret the Hubble diagram allows us to reconcile the
inferred value of ⌦m0 with the Planck results. Such an approach does not require us to invoke new
physics nor to violate the Copernican principle.

PACS numbers: 98.80.-k, 04.20.-q, 42.15.-i.

The standard interpretation of cosmological data re-
lies on the description of the Universe by a spatially ho-
mogeneous and isotropic spacetime with a Friedmann-
Lemâıtre (FL) geometry, allowing for perturbations [1].
The emergence of a dark sector, including dark matter
and dark energy, emphasizes the need for extra degrees
of freedom, either physical (new fundamental fields or in-
teractions) or geometrical (e.g. a cosmological solution
with lower symmetry). This has driven a lot of activity
to test the hypotheses [2] of the cosmological model, such
as general relativity or the Copernican principle.

The recent Planck data were analyzed in such a frame-
work [3] in which the cosmic microwave background
(CMB) anisotropies are treated as perturbations around
a FL universe, with most of the analysis performed at lin-
ear order. Nonlinear e↵ects remain small [4] and below
the constraints on non-Gaussianity derived by Planck [5].
The results nicely confirm the standard cosmological
model of a spatially Euclidean FL universe with a cos-
mological constant, dark matter and initial perturbations
compatible with the predictions of inflation.

Among the constraints derived from the CMB, the
Hubble parameter H

0

and the matter density parame-
ter ⌦

m0

are mostly constrained through the combination
⌦

m0

h3, where H
0

= h⇥ 100 km/s/Mpc. It is set by the
acoustic scale ✓⇤ = r

s

/D
A

, defined as the ratio between
the sound horizon and the angular distance at the time
of last scattering. The measurement of seven acoustic
peaks enables one to determine ✓⇤ with a precision bet-
ter than 0.1%. The constraints on the plane (⌦

m0

, H
0

)
are presented in Fig. 3 of Ref. [3] and clearly show this
degeneracy. The marginalized constraints on the two pa-
rameters were then derived [3] to be

H
0

= (67.3±1.2) km/s/Mpc, ⌦
m0

= 0.315±0.017 (1)

at a 68% confidence level. It was pointed out (see
Secs. 5.2–5.4 of Ref. [3]) that the values of H

0

and ⌦
m0

are, respectively, low and high compared with their val-
ues inferred from the Hubble diagram. Such a trend
was already indicated by WMAP-9 [6] which concluded
H

0

= (70± 2.2) km/s/Mpc.

Regarding the Hubble constant, two astrophysical
measurements are in remarkable agreement. First, the
estimation based on the distance ladder calibrated by
three di↵erent techniques (masers, Milky Way cepheids,
and Large Magellanic Cloud cepheids) gives [7] H

0

=
(74.3 ± 1.5 ± 2.1) km/s/Mpc, respectively with statis-
tical and systematic errors. This improves the ear-
lier constraint obtained by the HST Key program [8],
H

0

= (72 ± 8) km/s/Mpc. Second, the Hubble diagram
of type Ia supernovae (SNe Ia) calibrated with the Hubble
Space Telescope (HST) observations of cepheids leads [9]
to H

0

= (73.8 ± 2.4) km/s/Mpc. Other determinations
of the Hubble constant, e.g., from very-long-baseline in-
terferometry observations [10] or from the combination
of Sunyaev-Zel’dovich e↵ect and X-ray observations [11],
have larger error bars and are compatible with both the
CMB and distance measurements.

Additionally, the analsis of the Hubble diagram of
SNe Ia leads to a lower value of ⌦

m0

—e.g. 0.222± 0.034
from SNLS 3 [12]—compared to the constraint (1) by
Planck. As concluded in Ref. [3], there is no direct in-
consistency, and it was pointed out that there could be
residual systematics not properly accounted for in the SN
data. Still, it was stated that “the tension between CMB-
based estimates and the astrophysical measurements of
H

0

is intriguing and merits further discussion.”

Interestingly, the CMB constraints on (⌦
m0

, H
0

) are
in excellent agreement with baryon acoustic oscillation
(BAO) measurements [13], which allow one to determine
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ABSTRACT

According to the separate universe conjecture, spherically symmetric sub-regions
in an isotropic universe behave like mini-universes with their own cosmological param-
eters. This is an excellent approximation in both Newtonian and general relativistic
theories. We estimate local expansion rates for a large number of such regions, and
use a scale parameter calculated from the volume-averaged increments of local scale
parameters at each time step in an otherwise standard cosmological N -body simu-
lation. The particle mass, corresponding to a coarse graining scale, is an adjustable
parameter. This mean field approximation neglects tidal forces and boundary e↵ects,
but it is the first step towards a non-perturbative statistical estimation of the e↵ect of
non-linear evolution of structure on the expansion rate. Using our algorithm, a simu-
lation with an initial ⌦m = 1 Einstein–de Sitter setting closely tracks the expansion
and structure growth history of the ⇤CDM cosmology. Due to small but character-
istic di↵erences, our model can be distinguished from the ⇤CDM model by future
precision observations. Moreover, our model can resolve the emerging tension between
local Hubble constant measurements and the Planck best-fitting cosmology. Further
improvements to the simulation are necessary to investigate light propagation and
confirm full consistency with cosmic microwave background observations.

Key words: cosmology: dark energy – cosmological parameters – methods: numeri-
cal.

1 INTRODUCTION

Gravitation being the only e↵ective force on the largest
scales, cosmological evolution is governed by general relativ-
ity (GR). To zeroth order, the homogeneous and isotropic
Friedmann–Lemâıtre–Robertson–Walker (FLRW) solutions
of Einstein’s equations drive the expansion and growth
history of the Universe. The concordance ⇤CDM model
(e.g., Planck Collaboration 2016) posits an unknown form
of energy with negative pressure and an energy density
about 10123 o↵ from theoretical expectations. The ⇤CDM
paradigm reproduces most observations, although, to this
day, no plausible candidate for dark energy has emerged
and some tensions remain (see Buchert et al. 2016, for a re-
cent comprehensive review). Most notably, the latest local
measurements (Riess et al. 2016) of the Hubble constant are
up to 3.4� high compared to the value derived from Planck

observations (Planck Collaboration 2016) of the cosmic mi-
crowave background.

The ubiquitous presence of clusters, filaments, and voids
in the cosmic web manifestly violate the assumed homo-

? E-mail: ragraat@caesar.elte.hu

geneity of ⇤CDM. Given the non-linear nature of Einstein’s
equations, it has been known for a while that local inhomo-
geneities influence the overall expansion rate, whereas the
magnitude of such backreaction e↵ect is debated. In partic-
ular, Green & Wald (2014, 2016) argued that the e↵ect of
inhomogeneities on the expansion of the Universe is irrele-
vant, while Buchert et al. (2015) disputed the general appli-
cability of the former proof. More recently, Giblin, Mertens
& Starkman (2016) used numerical relativity to show the
existence of a departure from FLRW behaviour due to in-
homogeneities, beyond what is expected from linear pertur-
bation theory. Nevertheless, the spectacular successes of the
homogeneous concordance model suggest that any e↵ect of
the inhomogeneities on the expansion rate should be weak,
unless it mimics the ⇤CDM expansion and growth history
to a degree allowed by state of the art observations. In this
spirit, we present a statistical non-perturbative algorithm,
a simple modification to standard N -body simulations, that
provides a viable alternative to dark energy while it can si-
multaneously resolve the Hubble constant puzzle.

In the late-time non-linear evolution of the Universe,
coarse graining and averaging are both problematic (see
Wiltshire 2007a, 2011, and references therein). The complex-

c� 2017 The Authors
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Averaging

• Generally a Hubble Volume is taken to be the region 
over which we do averaging — we all agree that 
different Hubble patches could have different 
expansion rates (causality, right?) 

• Yet there is structure at (just) smaller scales 
• Galaxy Clusters 
• Inter-Cluster Distances

H�3 ⇡ (4000Mpc)3

⇠ 1� 10Mpc
⇠ 50Mpc



What you would like to do
• Write down the most general form of the metric, 

• Plug it into Einstein’s Equations 

• Solve the system of second order differential equations 
(subject to your gauge-constraints)

gµ⌫ =

0

BB@

g00 g01 g02 g03
g01 g11 g12 g13
g02 g12 g22 g23
g03 g13 g23 g33

1

CCA

Gµ⌫ = 8⇡GTµ⌫
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Abstract

Numerical relativity is the most promising tool for theoretically modeling the in-
spiral and coalescence of neutron star and black hole binaries, which, in turn, are
among the most promising sources of gravitational radiation for future detection
by gravitational wave observatories. In this article we review numerical relativity
approaches to modeling compact binaries. Starting with a brief introduction to the
3+1 decomposition of Einstein’s equations, we discuss important components of
numerical relativity, including the initial data problem, reformulations of Einstein’s
equations, coordinate conditions, and strategies for locating and handling black
holes on numerical grids. We focus on those approaches which currently seem most
relevant for the compact binary problem. We then outline how these methods are
used to model binary neutron stars and black holes, and review the current status
of inspiral and coalescence simulations.
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What can we do?

• You can do a little better by 
making gauge choices that 
reduce the number of 
parameters or 
(re)parameterize so that you 
have nice equations for.. 
some.. of them… 

• Even then they are extremely 
difficult to numerically 
stabilize



What we have to do…

• Luckily there are a set of new approaches.  We use the 
most common of these: the BSSN formalism. 

• It is based on the ADM metric decomposition 

• We we introduce more parameters than (minimally) 
necessary so that the equations are easier to solve

gµ⌫ =

✓
�↵2 + �lk�l�k �i

�j �ij

◆



In Cosmology

• We can fix the gauge (we will give up being able to 
create black holes, as well as some other concessions) 
to focus on spatial slices 

• We can then track the spatial 3-metric 

• as well as the extrinsic curvature 

Kij = e4�Āij +
1

3
�ijK

�ij = e4��̄ij
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In Cosmology

• We can fix the gauge (we will give up being able to 
create black holes, as well as some other concessions) 
to focus on spatial slices 

• We can then track the spatial 3-metric 

• as well as the extrinsic curvature 

Kij = e4�Āij +
1

3
�ijK

�ij = e4��̄ij

Think of this as 
keeping track of 
the size of local 

volumes

Think of this as 
measuring the local 

expansion rate



Importantly

These variables have well-
behaved differential equations 

and are a complete description 
of GR without additional 

constraints

@t� = �1

6
K

@t�̄ij = �2Āij

@tK = ĀijĀ
ij +

1

3
K2 + 4⇡(⇢+ S)

@tĀij = e�4�(Rij � 8⇡Sij)
TF +KĀij � 2ĀilĀ

l
j

@t�̄
i = 2�̄i

jkĀ
jk � 4

3
�̄ij@jK � 16⇡�̄ijSj + 12Āij@j� .



Importantly

These variables have well-
behaved differential equations 

and are a complete description 
of GR without additional 

constraints

@t� = �1

6
K

@t�̄ij = �2Āij

@tK = ĀijĀ
ij +

1

3
K2 + 4⇡(⇢+ S)

@tĀij = e�4�(Rij � 8⇡Sij)
TF +KĀij � 2ĀilĀ

l
j

@t�̄
i = 2�̄i

jkĀ
jk � 4

3
�̄ij@jK � 16⇡�̄ijSj + 12Āij@j� .

We chose synchronous gauge 
(cosmology) / geodesic slicing 

(Numerical GR) 
↵ = 1, �i = 0



With a Source

• As a first-guess; we take a Universe to be filled with a 
pressureless, non-interacting* perfect fluid with 

• This fluid obeys a fluid equation, 

• which vanishes in synchronous gauge.  *Therefore the 
the fluid doesn’t evolve (in our coordinates)

w = 0

@tD̃ = @t(�
1/2⇢0) = 0



Observables



Hubble Diagrams



The Universe Gets Clumpy

• We can now compare the 
statistics of K as a function of 
the initial density contrast  

• And how that statistic 
changes in time
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changes in time
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almost 5% deviations



The effect on the Hubble 
Diagram
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The effect on the Hubble 
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No indication of inhomogeneity leading to 
Dark Energy like effects



The Lensing Potential



Comparing Perturbation 
Theory

• We can try to run our BSSN formalism in Newtonian 
Gauge 

• Of course, this sets a gauge (slicing) condition  

• which is unstable

↵ ⇡ 1 + � e4� ⇡ a2(1� �)

↵̇ = �̇ =
K + K̄(↵� 2)

3
⇡ �K

3



Calculate Invariants (To Do…)
• Calculate the Bardeen potentials from the BSSN 

variables 

• Calculate Weyl Scalars from both models.

hij = �ij � a2�ij

ḣij = �2Kij � 2aȧ�ij

ḧij = �2
⇣
K̇ij +

�
ȧ2 + aä

�
�ij

⌘

 = �a

2

⇣
2ȧḂ + aB̈

⌘

� =
1

2

⇣
aȧḂ �A

⌘

A =
1

2a2

✓
hii �

1

r2
@i@jhij

◆

B =
1

r2

✓
hii

a2
� 3A

◆
,



Newtonian 
Approximation Full GR

Difference



Power Spectrum



Power Spectrum

~10% for very low l



Your Take-home

• There are (yet) not 
paradigmatic changes 
due to full Numerical 
Relativity 

• Full Relativistic effects are 
1-10 % level 
modifications to precision 
observables



Fin



Question #3 
How would an observer know?



Compare to FLRW

• In a homogeneous 
space (where the 
expansion rate is 
constant over the 
spatial slices) we 
expect the proper 
length of paths to 
scale with the 
scale factor 

we define a lot of paths along coordinate 
axes (of different lengths) and see how their 

proper length evolves over time



Compare to FLRW

• In a homogeneous 
space (where the 
expansion rate is 
constant over the 
spatial slices) we 
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length of paths to 
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Constructing Null Geodesics

• We start with the geodesic equation 

• recast in terms of the independent variable (of the 
code) 

• where we will define

d

2
x

µ

d�

2
= ��µ

↵�

dx

↵

d�

dx

�

d�

d2Xµ

dt2
= �d

2
x

µ

d�

2
= ��µ

↵�

dX↵

dt

dX�

dt
+ �0

↵�
dX↵

dt

dX�

dt

dXµ

dt

q

µ =
dx

µ

dt

= ↵(nµ + V

µ) pµ = E(nµ + V µ)and



Which gives us a set of 
equations to solve….

• Which needs to be solved 
along a set of trajectories 

• We don’t know where we end 
up (only where they start) 

• And they don’t lie on lattice 
points.

dXi

dt
= ↵V i � �i

dV i

dt
= ↵V j

⇣
V i@j ln↵�KjkV

kV i + 2Ki
j � (3)�i

jkV
k
⌘
� �ij@j↵� V j@j�

i

dE

dt
= E

�
↵KijV

iV j � V j@j↵
�



No Problem

• We start an large number (500) in arbitrary positions, 
and in arbitrary directions 

• We interpolate the fields along the paths (the lattice 
points are pretty close together) 

• At the end of the simulation we can look at the 
histories of the particles and draw Hubble Diagrams



No Problem

• We start an large number (500) in arbitrary positions, 
and in arbitrary directions 

• We interpolate the fields along the paths (the lattice 
points are pretty close together) 

• At the end of the simulation we can look at the 
histories of the particles and draw Hubble Diagrams

well…for Jim



Averaged Observers

• Good News: 

• Almost 
indistinguishable 
agreement with 
LCDM (and with 
ΩM=1)

• Bad News:

• Only redshift of 
0.1…



We look at the residuals

• If we look at 
the residuals 
we see that an 
averaged 
observer see a 
matter 
dominated 
Hubble 
diagram



Biased Observer (kinda)
• The deviations from 

“straight” aren’t huge 
for this toy Universe 

• So we take a set of 
points that we know 
will end up at 
(approximately) the 
same location 

• Which is an over 
density of about 10%



And the Residuals are…

We see 
a bias at 

low z



And the Residuals are…

but no 
indications 

(yet) that this 
mimics 
LCDM



Very Recently:  
We can run the program backward.



We can go out further
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How do we parameterize 
success?

• Reproducing GR requires the additional satisfaction of a set of 
constraints 

• The Hamiltonian Constraint: 

• The Momentum Constraints: 

• While the BSSN method is analytically equivalent to GR, the 
numerical implementation can still propagate spurious solutions 
if you leave the constraint surface 

H ⌘ �̄ijD̄iD̄je
� � e�

8
R̄+

e5�

8
ÃijÃ

ij � e5�

12
K2 + 2⇡e5�⇢ = 0

Mi = D̄j(e
6�Ãij)� 2

3
e6�D̄iK � 8⇡e10�Si = 0



Are we doing things right?
History says that we need to test the robustness of the code before we can 

extract any true results from it



“Apples to/with Apples”

• To show that we trust our numerical implementation, 
we run a set of standard tests and parameterize how 
“well” we do: 

• Can we recreate a black hole? 

• Can we recreate gravitational waves? 

• Can we recreate the homogeneous Universe?



Code Tests: Black Hole*

Black Hole Behavior

*we use “1+Log” gauge/slicing for this simulation

H ⌘ �̄ijD̄iD̄je
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Code Tests: Gravitational 
Wave

Linearized wave

H ⌘ �̄ijD̄iD̄je
� � e�

8
R̄+

e5�

8
ÃijÃ

ij � e5�

12
K2 + 2⇡e5�⇢



Code Tests: FLRW

The homogeneous Universe

H ⌘ �̄ijD̄iD̄je
� � e�

8
R̄+

e5�

8
ÃijÃ

ij � e5�

12
K2 + 2⇡e5�⇢



Background Expansion

• The average values of the 
density and extrinsic 
curvature follow the exact 
FLRW expectation
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Question #2 
Is the Universe inhomogeneous 

at small scales?



We’ll be interested in the 
generation of inhomogeneity of K

• For the Fiducial model, this 
(converges) and is resolution 
independent (given the same 
physical box size, power 
spectrum peak and cutoff)
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Weren’t you going to talk 
about physics?

• So we have a numerical 
framework 

• Let’s start a simulation where 
we have a volume of the 
Universe with some density 
perturbations 

• Then solve the initial 
condition problem (and put all 
the inhomogeneities in the 
volume elements not the 
expansion rates)

Pk =
4P⇤
3

k/k⇤
1 + (k/k⇤)4/3



The initial value problem

• By whatever means 
necessary, we begin with the 
assumption of homogeneous 
extrinsic curvature, and the 
metric response (to the 
source) is just in the 
conformal factor, 

• So that the initial conformal 
factor must obey the 
following situation, r2 = �2⇡ 5⇢ 

 ⌘ e�

K = �
p

24⇡⇢K

⇢ = ⇢K + ⇢ 



Fiducial Model
N2 = 1283

L =
H�1

I

2

�t =
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