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Gravity is Non-Linear

 We like to separate scales when doing physics
problems (e.g. what happens here, stays here)

 Non-linear physics can mix up scales - power
transferred between scales Is often referred to as
cascades or inverse-cascades

 The Averaging Problem : When we talk about the
expansion of the Universe on the largest of scales, is
there any contribution from smaller scales?
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Averaging

 Generally a Hubble Volume is taken to be the region
over which we do averaging — we all agree that
different Hubble patches could have different
expansion rates (causality, right?)

H° =~ (4000 Mpc)°

* Yet there is structure at (just) smaller scales
o Galaxy Clusters ~ 1 —10Mpc

e Inter-Cluster Distances ~ 50 Mpc




What you would like to do

* Write down the most general form of the metric,

/ JoomErgoTREy 02" 03 \
golmer g T g1o" g13
JoomE gTomE oo (o3
\ JosE g1 g23% 033 /

* Plug it into Einstein’s Equations

iy

G0 — onG 1.9

e Solve the system of second order differential equations
(subject to your gauge-constraints)
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What can we do?

 You can do a little better by
making gauge choices that
reduce the number of
parameters or
(re)parameterize so that you
have nice equations for..
some.. of them...

* Even then they are extremely
difficult to numerically
stabilize
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Abstract

Numerical relativity is the most promising tool for theoretically modeling the in-
spiral and coalescence of neutron star and black hole bi hich, in turn, are
among the most promising sources of glawtatmnal radiation for future detection
i i iew numerical relativity

a brief introduction to the

3+1 de(ompo ition of Einstein’s atio we dis important components of
al relativity, including the mltlal data problem, reformulations of Einstein’s
equations, coordinate conditions, and strategies for locating and handling black

e then outline ho

’ S k holes, and revie
of inspiral and coalescence simulations.
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What we have to do...

* Luckily there are a set of new approaches. We use the
most common of these: the BSSN formalism.

 Itis based on the ADM metric decomposition

- < —a? + BBk B )
b = o Vo)

 We we introduce more parameters than (minimally)
necessary so that the equations are easier to solve




In Cosmology

 We can fix the gauge (we will give up being able to
create black holes, as well as some other concessions)
to focus on spatial slices

« We can then track the spatial 3-metric
o =,

 as well as the extrinsic curvature

- 1
Ki; = e*?A;; + g%‘jK
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In Cosmology

 We can fix the gauge (we will give up being able to
create black holes, as well as some other concessions)
to focus on spatial slices

e We ST AN the spatial 3-metric
keeping track of 1o
the size of local % — € Ti
volumes

e as well as the extrinsic curvature

Think of this as . 1
measuring the local K;; = 64¢A7;j = e
expansion rate 3




Importantly

These variables have well-

1 behaved differential equations

0;0p = ——K and are a complete description
; O of GR without additional
OtV = —2A4;; constraints

. 1
OrRK = A §K2 +4n(p+ S)
&Jlij = 6_4¢(R7;j i 87TS@']')TF SE Kzzlw e 2121@[121;

- . A0 - L
O, =T W 3770, K — 16777 S; +12470;6.




Importantly

These variables have well-

1 behaved differential equations

O = —=-K and are a complete description
6 of GR without additional

0~y — 29N .
il e We chose synchronous gauge a/nts

] SR
_ .. x4 4, — (cosmology) / geodesic slicing
O K L 3 (Numerical GR)

&Jlij = 6_4¢(Rz’j o 0) = 1, 52 —()

L e pd e = Bty
O, =T W 3770, K — 16777 S; +12470;6.




With a Source

e As a first-guess; we take a Universe to be filled with a
pressureless, non-interacting® perfect fluid with

(il
e This fluid obeys a fluid equation,
) — ) =4

e which vanishes in synchronous gauge. *Therefore the
the fluid doesn’t evolve (in our coordinates)




Observables



Hubble Diagrams



The Universe Gets Clumpy

« We can now compare the
statistics of K as a function of
the initial density contrast

e And how that statistic
changes in time
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The effect on the Hubble
Diagram

arLrw (scale factor)
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The effect on the Hubble
Diagram
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The effect on the Hubble
Diagram

apLrRW (scale factor)

0.9 08 07 06 0504 facta
for a biased observer

No indication of inhomogeneity leading to
Dark Energy like effects

0.11 0.25 043 067 1. 1.5 "

Z (redshift)



The Lensing Potential



Comparing Perturbation
Theory

 We can try to run our BSSN formalism in Newtonian
Gauge

a~1+® e*? =~ a’(1— ®)

e Of course, this sets a gauge (slicing) condition

e 0K
3 o

o O —

 which is unstable




Calculate Invariants (To Do...)

e Calculate the Bardeen potentials from the BSSN
variables

J 1
hi-:%-—az&- -
e o e 12(}%2%—314),
s = =208 — 2ol V a
.}.Lij — ) (KZ] + (CL2 - CLCL) 513) \v
7 — —g (2aB i aB')

@z%(&dB—A)

e Calculate Weyl Scalars from both models.




Newtonian

Approximation Full GR

)

Difference



Power Spectrum

—=—= Approximate Convergence
—— Full GR Convergence
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Power Spectrum
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Your Take-home

* There are (yet) not

paradigmatic changes 4G
due to full Numerical &
Relativity fﬂ;!\

e Full Relativistic effects are
1-10 % level
modifications to precision
observables



Fin



Question #3
How would an observer know?



Compare to FLRW

e In a homogeneous
space (where the
expansion rate is
constant over the
spatial slices) we
expect the proper
length of paths to
scale with the
scale factor

we define a lot of paths along coordinate
axes (of different lengths) and see how their
proper length evolves over time



Compare to FLRW

 |n a homogeneous
space (where the
expansion rate is
constant over the
spatial slices) we
expect the proper
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Compare to FLRW
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Constructing Null Geodesics

 We start with the geodesic equation

d? L . dz® dxP
DY R
e recast in terms of the independent variable (of the
code)
d=X8 T XEE o 4R dXP dx*
d720 = 2l e U TR TR e T T

e where we will define
dax*

g — =2 —olndiVigland B e




Which gives us a set of
equations to solve....

 Which needs to be solved
along a set of trajectories

e We don’t know where we end

dX? o up (only where they start)

AT =AY — [ e And they don’t lie on lattice
dE iy ints.
dV’L 7 0 kyrt ) (3) i k ija j@ )
= @y (Viosmna — KjpVPve + 2K — OTL VE) — 4i99,0 - Vg8



No Problem

 We start an large number (500) in arbitrary positions,
and in arbitrary directions

 We interpolate the fields along the paths (the lattice
points are pretty close together)

e At the end of the simulation we can look at the
histories of the particles and draw Hubble Diagrams



No Problem

well...for Jim
 We start an large number (500) in arbitrary positions,
and in arbitrary directions

 We interpolate the fields along the paths (the lattice
points are pretty close together)

e At the end of the simulation we can look at the
histories of the particles and draw Hubble Diagrams



Averaged Observers

e Good News:

 Almost
indistinguishable
agreement with
LCDM (and with
QM=1)

* Bad News:

0.04 0.06 0.08 0.10

Redshift (z)

* Only redshift of
0k



We look at the residuals

e |If we look at
the residuals
we see that an
averaged
observer see a
matter
dominated
Hubble
diagram

0.00 0.02 0.04 0.06 0.08 0.10

Redshift (z)




Biased Observer (kinda)

* The deviations from ‘
“straight” aren’t huge
for this toy Universe

 So we take a set of
points that we know
will end up at
(approximately) the
same location

« Which is an over
density of about 10%




And the Residuals are...

0.0006

We see
a bias at
low Z

0.04 0.06 0.08 0.10

Redshift (z)




And the Residuals are...

but no
Indications
(yet) that this
mimics
LCDM

0.04 0.06 0.08 0.10

Redshift (z)




Very Recently:
We can run the program backward.
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We can go out further
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We can go out further

. 0.020
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How do we parameterize
success?

 Reproducing GR requires the additional satisfaction of a set of
constraints

e The Hamiltonian Constraint:
efb . €5</5 S5¢

_ i T gt € 2 5
H =~YD;Dje® — §R+? i A — EK 1+ 21e’>?p =0
e The Momentum Constraints:
2

M" = D;(eS? A7) — §€6¢DiK — 8me'??S' =0

« While the BSSN method is analytically equivalent to GR, the
numerical implementation can still propagate spurious solutions
If you leave the constraint surface




Are we doing things right?

History says that we need to test the robustness of the code before we can
extract any true results from it



“Apples to/with Apples”

 To show that we trust our numerical implementation,

we run a set of standard tests and parameterize how
“well” we do:

e Can we recreate a black hole?
 Can we recreate gravitational waves?

e Can we recreate the homogeneous Universe?



Code Tests: Black Hole*

*we use “1+Log” gauge/slicing for this simulation



Code Tests: Gravitational

Wave
. o R 5¢

12




Code Tests: FLRW

L OOBE g
ﬁ”DiDjeqb — — R+ G—AijAw = 61—2[(2 T 27T€5¢/0

H

The homogeneous Universe




Background Expansion

0.00000
-0.00005

-0.00010

2
i
<
e

~—

-0.00015

-0.00020

 The average values of the
density and extrinsic
curvature follow the exact
FLRW expectation




Question #2
Is the Universe inhomogeneous
at small scales?



We’ll be interested in the
generation of inhomogeneity of K

 For the Fiducial model, this
(converges) and is resolution
independent (given the same
physical box size, power
spectrum peak and cutoff)




Weren’t you going to talk
about physics?

e So we have a numerical

framework AT

Let’s start a simulation where

we have a volume of the - v b——
Universe with some density ' |
perturbations

o AP | ) 2
¥ B G

Then solve the initial

condition problem (and put all

the inhomogeneities in the

volume elements not the 4
expansion rates)




The initial value problem

* By whatever means
necessary, we begin with the
assumption of homogeneous
extrinsic curvature, and the
metric response (to the
source) is just in the
conformal factor,

=T

 So that the initial conformal

factor must obey the T 5
following situation, 0— D + Py VoY = =2m°py




Fiducial Model
N? = 1283 i

koo = —— Ak
Ap = BF peak ™ 799 9 — 0.04

10 P
10
kcutoﬂ" — Ak

.....



