DARK MATTER IMPRINTS OF HEAVY LONG-LIVED PARTICLES

AUGUST 9, 2017

BIBHUSHAN SHAKYA

UNIVERSITY OF Cincinnati

LSA THEORETICAL PHYSICS

Based on B. Shakya, J. D. Wells arXiv: 1611.01517

many well motivated heavy BSM particles should have been present in the early Universe

many well motivated heavy BSM particles should have been present in the early Universe

as they decay away, could leave visible imprints on dark matter!

SOME EXAMPLES

MODULI

Planck suppressed couplings, tend to decay late non-thermal production of O(100) GeV wino dark matter

HIDDEN SECTORS

heavy particles may reside in hidden sectors small coupling (epsilon) to visible sector

(A. Pierce, B. Shakya, work in progress)

SUPERSYMMETRY

predicts many BSM particles not seen at LHC - heavy?

THIS TALK

THIS TALK

STERILE NEUTRINO DARK MATTER

popular alternative to the WIMP paradigm right-handed neutrinos necessary for neutrino masses recent observational hint (3.5 keV X-ray line)

THIS TALK

STERILE NEUTRINO DARK MATTER

popular alternative to the WIMP paradigm right-handed neutrinos necessary for neutrino masses recent observational hint (3.5 keV X-ray line)

SUPERSYMMETRY

- might not be at the weak scale, solve the hierarchy problem, or provide wimp dark matter...
- appealing for several other reasons (gauge coupling unification,
 - mathematical elegance, stable vacua in string theory...)
 - most likely realized in nature at some (heavy?) scale!

* assume R-parity, take LSP to be sub-TeV, forms a small fraction of DM

STERILE NEUTRINO DARK MATTER (A LIGHTNING REVIEW)

traditional approach: Dodelson-Widrow mechanism: production via active-sterile oscillation due to mixing with active neutrinos

constrained by **X-ray line searches** (gives upper bound) and **Lyman-alpha measurements** (gives lower bound); together, these now rule out the DW mechanism several escape routes:

- resonant production (Shi-Fuller mechanism): lepton chemical potential in plasma
- freeze-out: additional gauge interactions lead to equilibrium and freeze-out
- freeze-in: gradual production through feeble coupling to some BSM particle in the bath

STERILE NEUTRINO DARK MATTER (A LIGHTNING REVIEW)

traditional approach: Dodelson-Widrow mechanism: production via active-sterile oscillation due to mixing with active neutrinos

constrained by **X-ray line searches** (gives upper bound) and **Lyman-alpha measurements** (gives lower bound); together, these now rule out the DW mechanism several escape routes:

- resonant production (Shi-Fuller mechanism): lepton chemical potential in plasma
- freeze-out: additional gauge interactions lead to equilibrium and freeze-out
- <u>freeze-in: gradual production through feeble coupling to some BSM particle in the bath</u> many realizations:

inflaton (0604236); radion (0711.1570); scalar in extended Higgs sector (0711.4646, 0609081, 0702143,1105.1654,1306.3996, 1409.4330, 1411.2773); scalar breaking a new symmetry in the neutrino sector (1412.4791)

[for a review: Shakya, 1512.02751]

STERILE NEUTRINO DARK MATTER FROM FREEZE-IN

MeV

Basic ingredients

 N_1

 N_1

1. some BSM particle in the early Universe that decays to DM 3. Sterile neutrino DM candidate, (effectively) stable

(technically natural, corresponds to a Z₂ symmetry for N₁)

> [does not need to be at keV scale]

2. some feeble coupling ($x^2 < \frac{m_{\phi}}{M_{\rm Pl}}$)

$$\mathcal{L} \supset y_{ij}L_ihN_j + x_i\phi\bar{N}_i^cN_i + \lambda(H^{\dagger}H)\phi^2$$

+ SUPERSYMMETRY

many new particles/ interactions/ decay modes !

THE STERILE SNEUTRINO $\, ilde{N}_1$

PRODUCTION $\phi \to \tilde{N}_1 \tilde{N}_1$ if allowed, due to the soft term $x_i A_{xi} \phi \tilde{N}_1 \tilde{N}_1$ (similarly from psi)

DECAY

charged under the approximate / exact Z₂ symmetry that stabilizes N₁. must decay into N₁; must go through $x_i\psi N_i\tilde{N}_i$ with the feeble coupling x₁ If $m_{\tilde{N}_1} > m_{\psi}$, $\tilde{N}_1 \rightarrow \psi N_1$ if $m_{\tilde{N}_1} < m_{\psi}$, $\tilde{N}_1 \rightarrow N_1\tilde{H}h$ through an off-shell ψ

- each decay produces an N₁ particle
- can be fairly long lived (and dominate energy density)
- must decay before LSP decoupling

RELIC DENSITY AND COMPOSITION

(at least) two distinct production mechanisms: phi decay, sterile sneutrino decay the two populations don't talk to each other!

second population is hotter

(sterile sneutrino is long-lived and decays out of equilibrium)

extremely nontrivial momentum distribution possible!

coupling x chosen to produce correct relic density

cold/warm/hot dark matter, or some combination, are all possible in this setup

$\Delta N_{\rm eff}$

- cannot be all of DM, else DM today is too hot, inconsistent with structure formation
- can be a subdominant (e.g. <1%) fraction of dark matter (from sterile sneutrino decay), if the rest of dark matter is cold (from phi decay)

$$\Delta N_{\rm eff} = \left. \frac{\rho_{N_1}}{\rho_{\nu}} \right|_{T = T_{BBN}}$$

 generally needs a multi-component dark matter setup; in our framework, N1 can be both! cold component from phi decay, hot component from sterile sneutrino decay!

STERILE NEUTRINO DM

WITH SUPERSYMMETRY

- the sterile sneutrino is an important player in the early Universe; long lived and decays to sterile neutrino DM due to structure of the theory
- single production mechanism
- single component
- can be cold/warm/hot
- cannot be both all of DM and contribute to $N_{\mbox{\scriptsize eff}}$

- multiple production mechanisms, extends viable parameter space
- multiple component dark matter with a single constituent
- can be cold/warm/hot, or some combination of all
- a subdominant component can give N_{eff} contributions, sterile neutrino can still be all of DM