

IceCube and Multimessenger Astronomy

francis halzen

- IceCube
- cosmic neutrinos: two independent
 observations
 - \rightarrow muon neutrinos through the Earth
 - \rightarrow starting neutrinos: all flavors
- where do they come from?
- Fermi photons and IceCube neutrinos
- other multiwavelength observations
- cosmic neutrinos below 100 TeV?
- the Galaxy

IceCube.wisc.edu

- 20% of the Universe is opaque to the EM spectrum
- non-thermal Universe powered by cosmic accelerators
- probed by gravity waves, neutrinos and cosmic rays

accelerator is powered by large gravitational energy

black hole neutron star

radiation and dust

 $p + \gamma \rightarrow n + \pi^+$ ~ cosmic ray + neutrino

 \rightarrow p + π^0 ~ cosmic ray + gamma

v and γ beams : heaven and earth

neutral pions are observed as gamma rays

charged pions are observed as neutrinos

$$\nu_{\mu} + \overline{\nu}_{\mu} = \gamma + \gamma$$

e

particle flows near supermassive black hole

IceCube and Multimessenger Astronomy

francis halzen

IceCube

- cosmic neutrinos: two independent observations
 - \rightarrow muon neutrinos through the Earth
 - \rightarrow starting neutrinos: all flavors
- where do they come from?
- Fermi photons and IceCube neutrinos
- other multiwavelength observations
- cosmic neutrinos below 100 TeV?
- the Galaxy

IceCube.wisc.edu

ultra-transparent ice below 1.5 km

IceCube

muon track: color is time; number of photons is energy

separating signal and "background"

muons detected per year:

• atmospheric* μ ~ 10¹¹

• atmospheric^{**} $\nu \rightarrow \mu \sim 10^5$

• cosmic $\nu \rightarrow \mu \sim 10-10^2$

* 3000 per second

** 1 every 6 minutes

isolated neutrinos interacting *inside* the detector (HESE)

up-going muon tracks (UPMU)

total energy measurement all flavors, all sky astronomy: angular resolution superior (<0.5°)

IceCube and Multimessenger Astronomy

francis halzen

- IceCube
- cosmic neutrinos: two independent observations
 - \rightarrow muon neutrinos through the Earth
 - \rightarrow starting neutrinos: all flavors
- where do they come from?
- Fermi photons and IceCube neutrinos
- other multiwavelength observations
- cosmic neutrinos below 100 TeV?
- the Galaxy

IceCube.wisc.edu

muon neutrinos through the Earth \rightarrow 6.4 sigma

~ 550 cosmic neutrinos in a background of ~340,000 atmospheric atmospheric background: less than one event/deg²/year

highest energy v_{μ} are cosmic: astronomy with 0.2-0.4 degree resolution !

after 7 years \rightarrow 6.4 sigma

IceCube and MultimessengerAstronomy

francis halzen

- IceCube
- cosmic neutrinos: two independent observations
 - \rightarrow muon neutrinos through the Earth
 - \rightarrow starting neutrinos: all flavors
- where do they come from?
- Fermi photons and IceCube neutrinos
- other multiwavelength observations
- cosmic neutrinos below 100 TeV?
- the Galaxy

IceCube.wisc.edu

isolated neutrinos interacting inside the detector

up-going muon tracks

calorimetry: direct energy measurement; all flavors astronomy: angular resolution superior

neutrinos starting inside the detector

- \checkmark no light in the veto region
- veto for atmospheric neutrinos that are typically accompanied by muons
 - energy measurement: total absorption calorimetry
- all sky, all flavors

atmospheric neutrinos are accompanied by muons from the decay (and also shower) that produced them → isolated events only (no signals in IceTop)

electron showers versus muon tracks

- 10 m long
- volume ~ 5 m^3
- isotropic after 25~50 m

GZK neutrino search: two neutrinos with > 1,000 TeV

- > 300 sensors
- > 100,000 pe reconstructed to 2 nsec

starting events: now 6 years $\rightarrow 8\sigma$

Partially contained event with energy ~ 6 PeV

two methods consistent above 100 TeV

oscillate over cosmic distances to 1:1:1

μ

IceCube and Multimessenger Astronomy

francis halzen

- IceCube
- cosmic neutrinos: two independent observations
 - \rightarrow muon neutrinos through the Earth \rightarrow starting neutrinos: all flavors
- where do they come from?
- Fermi photons and IceCube neutrinos
- other multiwavelength observations
- cosmic neutrinos below 100 TeV?
- the Galaxy

Galactic π^0 gamma rays (Fermi) \rightarrow charged $\pi \rightarrow$ neutrinos

extrapolation GeV \rightarrow TeV, PeV energy?

at most ~10% of the events are Galactic in origin
- we observe a diffuse flux of neutrinos from extragalactic sources
- a subdominant Galactic component cannot be excluded (no evidence reaches 3σ level)
- where are the PeV gamma rays that accompany PeV neutrinos?

IceCube and Multimessenger Astronomy

francis halzen

- IceCube
- cosmic neutrinos: two independent observations
 - \rightarrow muon neutrinos through the Earth
 - \rightarrow starting neutrinos: all flavors
- where do they come from?
- Fermi photons and IceCube neutrinos
- other multiwavelength observations
- cosmic neutrinos below 100 TeV?
- the Galaxy

IceCube.wisc.edu

gamma rays accompanying IceCube neutrinos interact with interstellar photons and fragment into multiple lower energy gamma rays that reach earth

e

- energy density of neutrinos in the non-thermal Universe is the same as that in gamma-rays
- at some level common Fermi-IceCube sources?
 → multimessenger campaign of telescope followup of IceCube real-time neutrino alerts

Population studies: blazar catalog search

What are the sources of Fermi's gamma rays?

- 50% identified blazars, non-blazar sources cannot exceed 15%?
- can be accommodated by starbursts galaxies that accommodate at most 10% of IceCube (however argument sensitive to spectral index)
- can be accommodated by *radiogalaxies* that accommodate IceCube neutrinos

blazars? not the resolved Fermi blazars, but...

- neutrinos originate from a larger volume
- 50% of blazars *not* identified
- sources transparent to high energy gamma rays may not have the target density to produce neutrinos (GRB?)

no resolved point sources... yet

flux nearest source = (diffuse flux observed)(density of sources)1/3

IceCube and Multimessenger Astronomy

francis halzen

- IceCube
- cosmic neutrinos: two independent observations
 - \rightarrow muon neutrinos through the Earth
 - \rightarrow starting neutrinos: all flavors
- where do they come from?
- Fermi photons and IceCube neutrinos
- other multiwavelength observations
- cosmic neutrinos below 100 TeV?
- the Galaxy

IceCube.wisc.edu

flux < 1% of astrophysical neutrino flux observed Nature 484 (2012) 351-353 timing/localization from satellites

timing + direction \rightarrow low background

HIGH-ENERGY EVENTS NOW PUBLIC ALERTS!

We send our high-energy events in real-time as public GCN alerts now!

TITLE: GCN/AMON NOTICE NOTICE_DATE: Wed 27 Apr 16 23:24:24 UT NOTICE_TYPE: AMON ICECUBE HESE RUN_NUM: 127853 EVENT_NUM: 67093193 SRC_RA: 240.5683d {+16h 02m 16s} (J2000), 240.7644d {+16h 03m 03s} (current), 239.9678d {+15h 59m 52s} (1950) +9.3417d {+09d 20' 30"} (J2000), SRC_DEC: +9.2972d {+09d 17' 50"} (current), +9.4798d {+09d 28' 47"} (1950) SRC_ERROR: 35.99 [arcmin radius, stat+sys, 90% containment] 0.00 [arcmin radius, stat+sys, 50% containment] SRC_ERROR50: 17505 TJD; 118 DOY; 16/04/27 (yy/mm/dd) DISCOVERY_DATE: DISCOVERY_TIME: 21152 SOD {05:52:32.00} UT **REVISION:** 2 N_EVENTS: 1 [number of neutrinos] STREAM: 1 DELTA_T: 0.0000 [sec] SIGMA_T: 0.0000 [sec] 0.0000e+00 [s^-1 sr^-1] FALSE_POS: 0.0000e+00 [dn] **PVALUE:** CHARGE: 18883.62 [pe] SIGNAL_TRACKNESS: 0.92 [dn] SUN_POSTN: 35.75d {+02h 23m 00s} +14.21d {+14d 12' 45"}

GCN notice for starting track sent Apr 27

We send **rough reconstructions first** and then **update them**.

PS16cgx: a young supernova in the field of a HESE neutrino

PAN-Starrs followed up IceCube HESE alert on 2016-04-27 and found a recent supernova at z=0.3:

- Optical spectroscopy 10, 20 days post-peak
- Features atypical for SNIa, but not sufficient to exclude

AGILE DETECTION OF A CANDIDATE GAMMA-RAY PRECURSOR TO THE ICECUBE-160731 NEUTRINO EVENT

F. LUCARELLI,^{1,2} C. PITTORI,^{1,2} F. VERRECCHIA,^{1,2} I. DONNARUMMA,³ M. TAVANI,^{4,5,6} A. BULGARELLI,⁷ A. GIULIANI,⁸ L. A. ANTONELLI,^{1,2} P. CARAVEO,⁸ P. W. CATTANEO,⁹ S. COLAFRANCESCO,^{10,2} F. LONGO,¹¹ S. MEREGHETTI,⁸ A. MORSELLI,¹² L. PACCIANI,⁴ G. PIANO,⁴ A. PELLIZZONI,¹³ M. PILIA,¹³ A. RAPPOLDI,⁹ A. TROIS,¹³ AND S. VERCELLONE¹⁴

Corresponding author: Fabrizio Lucarelli fabrizio.lucarelli@asdc.asi.it

IceCube and Multimessenger Astronomy

francis halzen

- IceCube
- cosmic neutrinos: two independent observations
 - \rightarrow muon neutrinos through the Earth
 - \rightarrow starting neutrinos: all flavors
- where do they come from?
- Fermi photons and IceCube neutrinos
- other multiwavelength observations
- cosmic neutrinos below 100 TeV?
- the Galaxy

IceCube.wisc.edu

• is there more ?

a "problem" ? gamma rays cascade in the source to < GeV energy

towards lower energies: a second component?

warning:

- spectrum may not be a power law
- slope depends on energy range fitted

PeV neutrinos absorbed in the Earth

low threshold starting event analysis; 7 years

shower events only: cosmic flux dominates > 20 TeV

- two component cosmic neutrino flux?
- cosmic accelerators do not follow a power-law spectrum?
- note that the gammas rays accompanying
 < 100 TeV neutrinos are not seen suggesting a hidden source(s)

not background: prompt decay of charm particles produced in the atmosphere

- tracks cosmic ray flux in energy, isotropic in zenith, normalization unknown: does not fit the data
- neutrino events are isolated
- incompatible with observes atmospheric *electron* neutrino spectrum

8 years (ICRC 2017)

IceCube and Multimessenger Astronomy

francis halzen

- IceCube
- cosmic neutrinos: two independent observations
 - → muon neutrinos through the Earth
 → starting neutrinos: all flavors
- where do they come from?
- Fermi photons and IceCube neutrinos
- other multiwavelength observations
- cosmic neutrinos below 100 TeV?
- the Galaxy

IceCube.wisc.edu

neutrinos from supernova remnants :

molecular clouds as beam dumps of PeVatrons

MGRO J1908+06: the first Pevatron? (2007!)

2007 simulated sky map of IceCube in Galactic coordinates after five years of operation of the completed detector. Two Milagro sources are visible with four events for MGRO J1852+01 and three events for MGRO J1908+06 with energy in excess of 40 TeV.

most significant source in pre-defined list (p-value 0.003 pretrial) joined HAWC-IceCube analysis in progress using photon templates

Table 1: Results of the pre-defined source list.							
Source	Type	$\alpha [\mathrm{deg}]$	$\delta [\mathrm{deg}]$	p-Value	TS	n_s	$\Phi_0[{\rm TeVcm^{-2}s^{-1}}]$
PKS 0235+164	BL Lac	39.66	16.62	0.7355	-0.400	0.00	$2.04 \cdot 10^{-13}$
1ES 0229+200	BL Lac	38.20	20.29	0.4762	-0.059	0.00	$4.47 \cdot 10^{-13}$
W Comae	BL Lac	185.38	28.23	0.4420	-0.055	0.00	$5.37 \cdot 10^{-13}$
Mrk 421	BL Lac	166.11	38.21	0.2433	0.029	0.48	$8.68 \cdot 10^{-13}$
Mrk 501	BL Lac	253.47	39.76	0.6847	-0.172	0.00	$3.51 \cdot 10^{-13}$
BL Lac	BL Lac	330.68	42.28	0.5104	-0.028	0.00	$5.58 \cdot 10^{-13}$
H 1426+428	BL Lac	217.14	42.67	0.7890	-0.243	0.00	$1.96 \cdot 10^{-13}$
3C66A	BL Lac	35.67	43.04	0.3306	-0.001	0.00	$7.50 \cdot 10^{-13}$
1ES 2344 + 514	BL Lac	356.77	51.70	0.9264	-0.808	0.00	$1.58 \cdot 10^{-13}$
1ES 1959 + 650	BL Lac	300.00	65.15	8.2009	0.124	1.69	$1.17 \cdot 10^{-12}$
S5 0716 + 71	BL Lac	110.47	71.34	0.7230	-0.380	0.00	$3.84 \cdot 10^{-13}$
3C 273	FSRQ	187.28	2.05	0.3807	-0.014	0.00	$4.42 \cdot 10^{-13}$
PKS 1502 + 106	FSRQ	226.10	10.52	0.2322	-0.000	0.00	$5.98 \cdot 10^{-13}$
PKS 0528+134	FSRQ	82.73	13.53	0.2870	-0 002	0.00	$5.74 \cdot 10^{-13}$
3C454.3	FSRQ	343.50	16.15	0.0072	5.503	5.98	$1.26 \cdot 10^{-12}$
4C 38.41	FSRQ	248.81	38.13	0.0055	5.686	6.62	$1.72 \cdot 10^{-12}$
MGRO J1908+06	NI	286.99	6.27	0.0032	6.284	3.28	$1.13 \cdot 10^{-12}$
Geminga	PWN	98.48	17.77	0.9754	-2.424	0.00	$1.16 \cdot 10^{-13}$
Crab Nebula	PWN	83.63	22.01	0.1188	0.709	4.32	$8.65 \cdot 10^{-13}$
MGRO J2019+37	PWN	305.22	36.83	0.9884	-3.191	0.00	$1.39 \cdot 10^{-13}$
Cyg OB2	SFR	308.09	41.23	0.3174	-0.002	0.00	$7.53 \cdot 10^{-13}$
IC443	SNR	94.18	22.53	0.8153	-0.457	0.00	$1.22 \cdot 10^{-13}$
Cas A	SNR	350.85	58.81	0.2069	0.033	0.88	$1.05 \cdot 10^{-12}$
TYCHO	SNR	6.36	64.18	0.4471	-0.019	0.00	$8.14 \cdot 10^{-13}$
M87	SRG	187.71	12.39	0.6711	-0.256	0.00	$2.85 \cdot 10^{-13}$
3C 123.0	SRG	69.27	29.67	0.9055	-0.747	0.00	$1.30 \cdot 10^{-13}$
Cyg A	SRG	299.87	40.73	0.0049	6.335	4.30	$1.78 \cdot 10^{-12}$
NGC 1275	SRG	49.95	41.51	0.2582	0.007	0.25	$8.31 \cdot 10^{-13}$
M82	SRG	148.97	69.68	0.8887	-0.888	0.00	$1.83 \cdot 10^{-13}$
SS433	XB/mqso	287.96	4.98	0.8738	-1.085	0.00	$1.01 \cdot 10^{-13}$
HESS $J0632 + 057$	XB/mqso	98.24	5.81	0.8359	-0.917	0.00	$1.01 \cdot 10^{-13}$
Cyg X-1	XB/mqso	299.59	35.20	0.5422	-0.106	0.00	$4.93 \cdot 10^{-13}$
Cyg X-3	XB/mqso	308.11	40.96	0.3230	-0.003	0.00	$7.28 \cdot 10^{-13}$
LSI 303	XB/maso	40.13	61.23	0.2843	0.001	0.17	$1.01 \cdot 10^{-12}$

HAWC View of Gamma Ray Sky

Conclusions

- discovered cosmic neutrinos with an energy density similar to the one of gamma rays.
- neutrinos (cosmic rays) are essential in understanding the nonthermal universe.
- from discovery to astronomy: more events, more telescopes
- neutrinos are never boring!

🎌 AUSTRALIA

University of Adelaide

BELGIUM

Université libre de Bruxelles Universiteit Gent Vrije Universiteit Brussel

🚺 CANADA SNOLAB University of Alberta-Edmonton

DENMARK University of Copenhagen

GERMANY

Deutsches Elektronen-Synchrotron Friedrich-Alexander-Universität Erlangen-Nürnberg Humboldt–Universität zu Berlin Ruhr-Universität Bochum **RWTH** Aachen Technische Universität Dortmund Technische Universität München Universität Münster Universität Mainz Universität Wuppertal

THE ICECUBE COLLABORATION

JAPAN Chiba University

NEW ZEALAND University of Canterbury

REPUBLIC OF KOREA Sungkyunkwan University

SWEDEN Stockholms Universitet **Uppsala** Universitet

+ SWITZERLAND Université de Genève **UNITED KINGDOM** University of Oxford

UNITED STATES

Clark Atlanta University **Drexel University** Georgia Institute of Technology Lawrence Berkeley National Lab Marguette University Massachusetts Institute of Technology Michigan State University Ohio State University Pennsylvania State University South Dakota School of Mines and Technology

Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California, Berkeley University of California, Irvine University of Delaware University of Kansas University of Maryland University of Rochester University of Texas at Arlington

University of Wisconsin–Madison University of Wisconsin–River Falls Yale University

FUNDING AGENCIES

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen)

German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY)

Federal Ministry of Education and Research (BMBF) Japan Society for the Promotion of Science (JSPS) Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat

The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

Related talks with more details:

- Nancy Wandkowski
 – starting events 6 years
- Nancy Wandkowski
 – low threshold starting events 7 years
- Hans Niederhausen– neutrino induced showers 4 years
- Lu Lu– All flavor very high energy analysis
- Joshua Wood— joint HAWC-IceCube Galactic analysis
- Sarah Mancina
 – impoved starting muon neutrino analysis
- Donglian Xu– fast radio burst
- Carsten Rott– neutrinos from the sun
- Mike Richman
 – point source search 6 years
- Zach Griffith– high energy gamma ray search
- Tianlu Yuan– improved shower reconstruction
- Daan Van Eijk– ANTARES and KM3NeT
overflow slides

Cosmic Ray Spectra of Various Experiments

energy in the Universe in gamma rays, neutrinos and cosmic rays

Rapid neutrino follow-up observations

	Time	RA	Dec	Err (50%)	Err (90%)
rev0	Apr 27, 05:54	239.66°	6.85°	1.6°	8.9°
rev2	Apr 27, 23:24	240.56°	9.34°	_	0.6°

- <u>Rev0</u>: **71 min** live-time (reduced high-voltage)
- <u>Rev2</u>: **118 min** live-time (reduced high-voltage) taken on Apr 28th.
- No gamma-ray signal in the ROI.

More neutrinos from IceCube!

- Selection of IceCube extreme high-energy (EHE) muon neutrinos.
- GCN alerts went public on July 15th.
- First alert on Jul 31st, 2016. VERITAS was not operating.
- Rate ~ 4-6/year (**~2 astro/~4 bkg**). Latency ~ 0.5 3 minutes. **0.1°-0.4°** ang. resolution.

(http://gcn.gsfc.nasa.gov/notices_amon/6888376_128290.amon)

VERITAS observation of the PeV muon location

- 4 runs (1.83 hr of live-time) taken on 03/27/2016 under dark conditions. Analysis optimized for soft-spectrum sources.
- No gamma emission detected within the neutrino error circle. ULs at the level of a few percent of the Crab.
- Upper limits at the level of 0.1% of the all-sky astrophysical neutrino flux (depends on spectral extrapolation and source redshift).

Gamma-ray flux from IceCube sources

Quasi-isotropic IceCube neutrino flux converted to gamma-ray flux from N_s sources

after 7 years \rightarrow 6 sigma

after 6 years: $3.7 \rightarrow 6.0$ sigma

HESE 4 year unfolding $(\rightarrow \text{ dominated by shower-like events})$

• Different event signatures allow flavor separation \rightarrow primarily μ vs. e, τ

