

 NuSTAR Observations of Non-thermal Emission from

 Young Supernova Remnants

 Fiona Harrison

 Caltech
 TeVPA 2017

INTEGRAL, Swift BAT

NuSTAR

X-Ray Telescopes & the Electromagnetic Spectrum

Sensitivity

NuSTAR two-telescope total collecting area

Satellite (instrument)	Sensitivity
INTEGRAL (ISGRI)	~0.5 mCrab (20-100 keV) with >Ms exposures
Swift (BAT)	~0.8 mCrab (15-150 keV) with >Ms exposures
NuSTAR	1 μCrab (10-40 keV) in 1 Ms

Sensitivity comparison

Previous high-energy X-ray view of the heart of the Milky Way

Extended Hard X-ray Emission in the Inner Parsecs of the Galaxy, Perez et al. Nature 2015

NEWS 02:46 05.05.2015 (updated 08:58 05.05.2015) Get short URL

New images captured by NASA of a mysterious glow at the center of our galaxy may have been produced by the "howls" of dead stars feeding off their live companions.

02:15 US Breaches Human Rights Promises by Not Bringing CIA Torturers to Justice

MOST READ

LATEST

LATEST NEWS

CAUGHT IN THE ACT: NUSTAR SHOWS 'ZOMBIE' STARS MAY HOWL AS THEY FEED

NuSTAR data reveals 'zombie' stars may scream as they devour their companions. Photo Credit: NASA/JPL-Caltech

MAY 4TH, 2015

AMY THOMPSON

NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) has been peering deep into the heart of our

Neutrino Heating

Foglizzo+, 2011

Cassiopeia A

Iron

Silicon/Magnesium

Radioactive ⁴⁴Ti

Cas A in Radioactivity

Grefenstette et al 2016

Locating the Most Energetic Electrons

6 cm radio

Chandra 5-6 keV

NuSTAR 10-20 keV

Zoom In on Interior Knots

GeV and TeV Emission

Another Famous Young Remnant– SN 1987A

Boggs, FH et al Science, 2015

Asymmetric cloud of supernova debris mostly thrown away from us

NuSTAR Legacy Surveys

NuSTAR GO Program: A0-3

25% NuSTAR time dedicated to Legacy Surveys Program to observe HAWC, HESS, VERITAS sources

NuSTAR Observations of HESS J1640-465 Powered by a young pulsar

- Hard X-ray source discovered in Norma Survey
- Highly obscured very faint in Chandra/XMM

PSR J1640-4631 confirmed with a significant frequency shift due to spin-down of pulsar

Young, energetic pulsar - 206 ms spin-down age, $\tau \sim 3$ kyr and energy, $\dot{E} \sim 5 \times 10^{36}$

PSR J1640-4631: pulsar powering HESS J1640-465, (Gotthelf et al. 2014)

HESS J1640-465

"HESS Source of the Month" twice - different interpretations!

Mar 2007: HESS J1640-465 – "A Pulsar Wind Nebula?" Sep 2013: HESS J1640-465 – "An Exceptionally Luminous TeV Γ-ray Supernova Remnant"

•Luminous, extended HESS TeV src., origin highly uncertain

- Coincident with radio SNR G338.3-0.0,
- Neighboring HII region due north hadronic?
- Funk 2007: Extended XMM source leptonic?
- Lumiere 2009: Chandra pt. src. + diff. emission.
- Slane 2010: Associated Fermi GeV source?

Radio (blue), IR (8 µm green; 24 µm red), X-ray src (cross)

"Given the now available multi-wavelength data, it turns out that the hypothesis of a pulsar-wind origin of the gamma-ray emission is difficult to maintain; size and spectra (Fig. 2) of the source favor emission caused by interaction of supernova-accelerated cosmic rays with the dense ambient gas, in particular in the northern section of the remnant."

Reference: H.E.S.S. Collaboration, A. Abramoswki et al., "HESS J1640-465 - an exceptionally luminous TeV gamma-ray SNR", to be submitted.

HESS J1640-465

"HESS Source of the Month" twice - different interpretations!

Mar 2007: HESS J1640-465 – "A Pulsar Wind Nebula?" Sep 2013: HESS J1640-465 – "An Exceptionally Luminous TeV Γ-ray Supernova Remnant"

•Luminous, extended HESS TeV src., origin highly uncertain

- Coincident with radio SNR G338.3-0.0,
- Neighboring HII region due north hadronic?
- Funk 2007: Extended XMM source leptonic?
- Lumiere 2009: Chandra pt. src. + diff. emission.
- Slane 2010: Associated Fermi GeV source?

Radio (blue), IR (8 µm green; 24 µm red), X-ray src (cross)

"Given the now available multi-wavelength data, it turns out that the hypothesis of a pulsar-wind origin of the gamma-ray emission is difficult to maintain; size and spectra (Fig. 2) of the source favor emission caused by interaction of supernova-accelerated cosmic rays with the dense ambient gas, in particular in the northern section of the remnant."

Reference: H.E.S.S. Collaboration, A. Abramoswki et al., "HESS J1640-465 - an exceptionally luminous TeV gamma-ray SNR", to be submitted.