Neutrino Astronomy fast-forward Marek Kowalski (DESY & Humboldt University Berlin) TeVPA 2017, Columbus, Ohio

The promised land

The Universe is opaque to EM radiation for 1/4 of the spectrum, i.e. above 10-100 TeV where IceCube sees cosmic neutrinos.

The promised land

The Universe is opaque to EM radiation for 1/4 of the spectrum, i.e. above 10-100 TeV where IceCube sees cosmic neutrinos.

High-energy neutrinos on the sky observed by IceCube

IceCube, 2017

No evidence of clustering in high-energy neutrino directions **mostly isotropic** \Rightarrow **neutrinos of extragalactic origin**

High-energy neutrinos on the sky observed by IceCube

Event numbers: brightest point source vs all N_{ps} ~ 10⁻² (n/10⁻⁷ Mpc⁻³)^{-1/3} x N_{diff}

High-energy neutrinos on the sky: Constraints on source candidates

benchmark sensitivity from Weizmann 2017: $\Phi = 10^{-13} \text{ E}^{-2} \text{ TeV cm}^{-2} \text{s}^{-1}$ \Rightarrow allows to probe all source classes

- Resolve the sources of IceCube's high energy astrophysical neutrinos
- Identify the sources of the highest energy cosmic rays
- Decipher the production mechanisms of high energy cosmic particles
- Obtain a unique multi-messenger view into the explosion of stars and the evolution of stellar remnants
- Explore active galaxies and the very high-energy Universe when it was most active
- Study of galactic and extra galactic propagation of CR with neutrinos as tracers
- Test nuclear, neutrino and BSM physics

Future project overview

complementarity, sensitivity to neutrino sources "precision frontier"

Present neutrino detectors

sensitivity at **PeV** energies "intensity frontier"

sensitivity at EeV

and beyond

ARA, ARIANNA, EVA, GRAND

KM3NeT, GVD

KM3NeT

https://arxiv.org/abs/1601.07459

Giant Volume neutrino Detector (GVD)

A wide band neutrino observatory (MeV – EeV) using several detection technologies – optical, radio, and surface veto – to maximize the science

Multi-component observatory:

- IceCube-Gen2 High-Energy Array
- Surface air shower detector
- Sub-surface radio detector
- PINGU

IceCube-Gen2 Surface Veto

see also Tienlu Yuan's presentation

Identifying the sources of IceCube's neutrinos

15 years IceCube + 15 years IceCube-Gen2

benchmark sensitivity from Weizmann 2017: $\Phi = 10^{-13} \text{ E}^{-2} \text{ TeV cm}^{-2} \text{s}^{-1}$

Identifying the sources of IceCube's neutrinos

IC-Gen2 will have sufficient sensitivity to detect all reasonable source scenarios

*Sensitivity for source catalog search

)

Propagation effects	0.0	DM Eff_oper	Scenario	Exclusion IceCube	by Exclusion by IceCube-
	0.1				Gen2
Quantum	0.2	Snortcut	Complete flavor triangle	42%	96%
decoherenc	e [.] .	🔵 Decay	Standard mixing	2%	73%
0	.3	- Pseudo	Non-standard neutrino	17%	93%
0.4	-0.	Storilo	production	- 04	0.10
0.4			NSI at production	5%	84%
$\mathcal{E} = -0.5$		0.0 c	Matter effetcs	0%	71%
$S\tau+\tau,\oplus$ 0.0		_0 5 Sµ+µ,⊕	Pseudo-Dirac neutrino	14%	85%
0.6		0.5	Decay	14%	85%
		-04	Quantum decoherence	2%	73%
0.7		0.4	Sterile neutrino	10%	86%
		-0.3	Effective operator	36%	94%
0.0			Interaction with DM	42%	96%
0.9		0.2	Shortcut through extra	11%	80%
0.0			dimension		
1.0		0.1	NSI in Earth matter	30%	92%
	, , , , , ,		NSI at detection	11%	89%
0.0 0.1 0.2 0.3	0.4 0.5 0.6 0.7	0.8 0.9 1.0			
	$\xi_{e+\bar{e}}$				
Gen2 (15 yrs)	JC+C,⊕		Rasmus	sen et al.	(1707.07684)

The energy front with the radio technique

Sensitivity of future radio detectors

10-9 GeV cm-2s-1sr-1@109 GeV benchmark point from Weizmann workshop 2017

Neutrino astronomy project timeline & Milestones

Conclusions

- High-energy extra-galactic neutrinos observed, opening a unique view on the high-energy Universe
- Sources not yet resolved, new multi-messenger methods being developed
- As old questions are answered, new ones emerge, i.e. the spectrum appears to be complex
- Construction and Planning of new projects underway to cover full sky and large energy range, optimized for neutrino astronomy in the next decades

27-31 August 2018 | Berlin

http://tevpa2018.desy.de

