The Search for Dark Matter in the Gamma-Ray Sky

Mariangela Lisanti Princeton University

Thermal Dark Matter

Dark matter is in equilibrium in the early Universe

As temperature cools, eventually

Dark matter stops annihilating and falls out of equilibrium Relic abundance for dark matter is thus established

WIMP Paradigm

Weakly interacting particle with mass ~100 GeV to 1 TeV gives density observed today

WIMPs provide a lamppost to guide searches for dark matter (Important to keep in mind that many other possibilities are theoretically viable)

WIMPs Today

Dark matter self-annihilations are rare today, but do occur

Increase chances of observing these rare events by looking in densest dark matter regions of the sky

Searching for high-energy gamma rays from dark matter annihilation is the most direct way to probe the thermal hypothesis

Indirect Detection

Monochromatic Photons

Direct annihilation to photons, a line in photon energy spectrum

Continuum Photons

Annihilation to Standard Model states that shower into photons

Annihilation Flux

The photon flux for dark matter annihilation is given by

J-factor depends on the dark matter density profile

$$\rho_{\rm NFW}(r) \propto \frac{(r/r_s)^{-\gamma}}{\left(1 + r/r_s\right)^{3-\gamma}}$$

Best to look for dark matter annihilation at centers of galaxies, where density is highest

The Sky in Gamma Rays

OSO-3 (1967-1968) > 50 MeV

(not shown)

EGRET (1991-2000) 30 MeV - 30 GeV

Fermi LAT (2008-) 20 MeV - 300 GeV

Touring the Gamma-Ray Sky

Diffuse Gamma Rays

High-energy γ -rays produced through propagation of cosmic rays in the Galaxy

Touring the Gamma-Ray Sky

Milky Way

GeV Photon Excess

Spherically symmetric gammaray excess in the Inner Galaxy

Extends out 10° (~5000 lyr) from the center of Galaxy

Constitutes ~10% total flux

High statistical significance

Goodenough and Hooper [0910.2998] Hooper and Goodenough [1010.2752] Boyarsky, Malyshev, Ruchayskiy [1012.5839] Hooper and Linden [1110.0006] Abazajian and Kaplinghat [1207.6047] Gordon and Macias [1306.5725] Abazajian *et al.* [1402.4090] Daylan *et al.* [1402.6703] Calore, Cholis, and Weniger [1409.0042] *Fermi* Collaboration [1511.02938, 1704.03910]

Daylan, Finkbeiner, Hooper, Linden, Portillo, Rodd, and Slatyer [1402.6703]

GeV Photon Excess

Spatial morphology and energy spectrum may be consistent with dark matter expectation

GeV excess appears to be robust to changes in diffuse-emission modeling

Daylan *et al.* [1402.6703]

Calore, Cholis, & Weniger [1409.0042]

Unresolved Sources

GeV excess could also be explained by a population of unresolved sources just below *Fermi*'s detection threshold

Rapidly-spinning neutron stars, called millisecond pulsars, are potential candidates

Abazajian [1011.4275]

O'Leary et al. [1601.05797]

Photon Statistics

Apply image processing techniques to distinguish dark matter from unresolved astrophysical sources

Malyshev and Hogg [1104.0010]; Lee, Lisanti, and Safdi [1412.6099]

Inner Galaxy Analysis

Evidence for unresolved sources in the Galactic Center that can account for the GeV excess

Lee, Lisanti, Safdi, Slatyer, and Xue [1506.05124]

Complimentary study using wavelet methods (Bartels 2016) found similar results; findings supported by recent *Fermi* analysis (Ajello 2017)

Millisecond Pulsars

MSPs may have been dumped in Inner Galaxy by disrupted globular clusters

Brandt and Kocsis [1507.05616]; see also Hooper and Linden [1606.09250] for summary of challenges

In the coming few years, targeted and large-area radio surveys will be able to detect individual millisecond pulsars if they exist in the Inner Galaxy

Calore et al. [1512.06825]

ESO/NASA/JPL-Caltech/M. Kornmesser/R. Hurt

Dark Matter Subhalos

Via Lactea N-body Simulation

80 kpc

Dark Matter Subhalos

See parallel session talk by Laura Chang

Hierarchical structure formation leads to substructure within large halos

Predicted Subhalo Flux in Milky Way

Require that the number of bright subhalos do not over-predict the number of resolved sources observed by *Fermi*

Schoonenberg et al. [1601.06781]; Bertoni et al. [1602.07303]; Hooper and Witte [1610.07587]; Calore et al. [1611.03503]; Wang et al. [1611.05135]; Liang et al. [1703.07078]

Can also search for a population of unresolved subhalos using photon statistics

Lee et al. [0810.1284]; Chang, Lisanti, and Mishra-Sharma [in progress]

Dwarf Galaxies

These faint galaxies are dark matter dominated and thus excellent targets for annihilation searches

Known satellites before 2015
 A A Image New Candidates

Dwarf Galaxies

Six years of data from *Fermi* LAT used to search for gamma-ray emission from 45 dwarf spheroidal candidates

Observations are becoming sensitive to thermal weak-scale dark matter

Albert et al. [1611.03184]

Extragalactic Dark Matter

Breadth of searches currently targeting signals from extragalactic halos

Regis et al. [1503.05922]

Ackermann et al. [1501.05464]

Ackermann et al. [1510.00004]

Dark Matter Sky Maps

Lisanti, Mishra-Sharma, Rodd, and Safdi [in preparation]

Create an all-sky map that traces the 'hot spots' for dark matter annihilation

Galaxy-halo connection allows one to build this map in a deterministic fashion Galaxy luminosity \rightarrow Halo mass \rightarrow Halo concentration

From a Group Catalog...

2MASS Redshift Survey is a nearly all-sky near-infrared survey that samples 45,000 galaxies up to redshifts of z~0.03

Bilicki et al. [1311.5246]; Huchra et al. [1108.0669]

Recent catalogs identify groups of nearby galaxies and their associated halo properties

Tully [1503.03134]; Lu et al. [1607.03982]; Kourkchi and Tully [1705.08068]

...to a Dark Matter Sky Map

Lisanti, Mishra-Sharma, Rodd, and Safdi [in preparation]

Virgo

1e+16

 $\left(\right)$

Galaxy Group Limit

Lisanti, Mishra-Sharma, Rodd, and Safdi [in preparation]

Stacked analysis of ~500 brightest galaxy groups out to z ~ 0.03

Limits are competitive with dwarf galaxies and put dark matter interpretation of GeV excess further into tension

Galaxy Group Limit

Lisanti, Mishra-Sharma, Rodd, and Safdi [in preparation]

Largest gain in the stacking comes from the ~10 brightest halos in the catalog

Virgo, NGC0253, NGC3031, Centaurus, NGC1399, NGC4594, IC1613, NGC4736, NGC4565, Hydra

Lisanti, Mishra-Sharma, Rodd, and Safdi [in preparation]

Our work provides a new catalog of extragalactic dark matter targets

This catalog will be publicly available and will include J-factors, masses, concentrations, and boost factors for each target

Name	$\log_{10} J$	$\log_{10} M_{\rm vir}$	$z \times 10^{-3}$	ℓ	b	$\log_{10} c_{\rm vir}$	$b_{\rm sh}$	$ heta_{ m vir}$	$\mathrm{TS}_{\mathrm{max}}$
	$[{\rm GeV^2~cm^{-5}~sr}]$	$[M_{\odot}]$		[deg]	[deg]				
Andromeda	19.79	12.44	0.17	121.51	-21.79	1.04	2.64	28.26	3.01
Virgo	19.12	14.66	3.58	283.78	74.49	0.80	4.53	7.36	1.05
NGC5128	18.90	12.95	0.82	307.88	17.08	0.99	3.14	8.63	0.00
NGC0253	18.76	12.78	0.79	98.24	-87.89	1.01	2.90	7.85	0.57
Maffei 1	18.69	12.69	0.78	136.23	-0.44	1.02	2.81	7.42	6.83
NGC 6822	18.59	10.71	0.11	25.34	-18.40	1.18	1.70	11.69	21.17
NGC3031	18.59	12.63	0.83	141.88	40.87	1.02	2.76	6.71	0.00
Centaurus	18.35	14.62	8.44	302.22	21.65	0.81	4.50	3.06	5.21
NGC1399	18.31	13.87	4.11	236.62	-53.88	0.89	3.87	3.50	38.77
IC0356	18.27	13.57	3.14	138.06	12.70	0.93	3.51	3.65	0.00
NGC4594	18.27	13.36	2.56	299.01	51.30	0.95	3.36	3.81	0.00
Norma	18.18	15.10	17.07	325.29	-7.21	0.75	5.17	2.20	1.56
IC 1613	18.17	10.66	0.17	129.74	-60.58	1.18	1.67	7.31	0.00
Perseus	18.14	15.08	17.62	150.58	-13.26	0.75	5.16	2.10	0.00

Back Up Slides

Galaxy Group Selection

Some clusters emit gamma-rays because of standard cosmic-ray processes

We exclude galaxies with residuals that are inconsistent with dark matter

A galaxy group is excluded if it...

is located near the galactic plane

overlaps with another halo

has a significant 3σ gamma-ray excess and this excess is strongly excluded by dark matter limits set by other galaxy groups

We performed extensive tests to ensure that an actual signal would not be excluded by these requirements

Galaxy Group Selection

Starting from 1000 galaxy groups, about 400 pass the selection criteria

Example: Top 6 Halos, Ranked by J-factor

