New Measurements of the Hubble Constant

Dan Scolnic, KICP/Hubble Fellow - University of Chicago TeVPA @ The Ohio State University

The National Science Foundation

The University of Chicago

The Kavli Foundation

Over next few years, story of cosmology will have a lot of plots like this:

DES 2017

Game of Tension:

Results are Coming

CMB

BAO

Supernova

Cepheids/SN Strong Lensing Weak Lensing

Ultimate "End-to-end" test for Λ CDM: Predict and Measure H_0

The Standard Model of Cosmology, ACDM **Big Bang** CMB, z=1000 DARK Sound MATTER σ_H(ACDM)=0.4% Horizon PLANETS+ PLANETS 25% STARS+GAS 0.05% DARK ENERGY 70% $D(z) = D_* - \int_z^{z_*} \frac{dz}{H(z)}$ STARS 0.5% GAS 4% Now z=0, σ_H=1%

 $\frac{4\pi G}{3}\left(\rho+\frac{3p}{c^2}\right)+\frac{\Lambda c^2}{3}$

Put another way, combining local and CMBinferred values of H0 constrains dark energy (w)

Based on Manzotti, Dodelson, Park 2016

A 2.4% Determination of the Local Value of the Hubble Constant¹

Adam G. Riess^{2,3}, Lucas M. Macri⁴, Samantha L. Hoffmann⁴, Dan Scolnic^{2,5}, Stefano Casertano³, Alexei V. Filippenko⁶, Brad E. Tucker^{6,7}, Mark J. Reid⁸, David O. Jones², Jeffrey M. Silverman⁹, Ryan Chornock¹⁰, Peter Challis⁸, Wenlong Yuan⁴, Peter J. Brown⁴, and Ryan J. Foley^{11,12}

Three steps to the Hubble Constant

Three steps to the Hubble Constant

There are 4 different anchors that span 23 mags with <2% error!

Most scatter from SNe, not cepheids [Need better understanding of SN physics - e.g. LOX project by R. Miller]

Ultimately, we produce the distance ladder.

Four geometric distance calibrations of Cepheids:

(i) megamasers in NGC 4258: 72.25±2.51
(ii) 8 DEBs in the LMC: 72.04±2.67
(iii) 15 MW Cepheids with parallaxes: 76.18±2.37
(iv) 2 DEBs in M31: 74.50±3.27

Best estimate of H0:

73.24±1.74

H0 (km/s/Mpc)

This value is 3.4σ higher than Planck 66.9 ± 0.6 km/s/Mpc for ACDM with 3 neutrino flavors having a mass of 0.06 eV and the Planck data

(2.0 σ relative to the prediction of 69.3 ± 0.7 km/s/Mpc from WMAP+SPT+ACT+BAO)

There have been a number of re-analyses of SH0ES paper in last year, nothing too different

Our best estimate of H0:

73.24±1.74 km/s/Mpc

– Follin & Knox 2017 (arXiv:1707.01175) (modelling of cepheid systematics/photometry. H0=73.3 ± 1.7 (stat) km/s/Mpc)

- Cardona et al. 2017 (arxiv:1611.06088): Bayesian hyper-parameters for outlier rejection $H0 = 73.75 \pm 2.11 \text{ km/s/Mpc}$

- Feeney et al. 2017 (arXiv:1707.00007): Bayesian hierarchical model, impact of non-gaussian likelihoods $H0 = 72.72 \pm 1.67$ km/s/Mpc

– Zhang et al. 2017 (arXiv:1706.07573v1): Blinded reanalysis R11 [my take: technical error of not treating systematics simultaneously] finds. $H0 = 72.5 \pm 3.1(stat) \pm 0.77(sys) \text{ km/s/Mpc}$

DES pulls OmegaM lower

SPT favors a lower OmegaM, higher H0

Parameter		Dataset
	SPTPOL	PlanckTT
Free		
$100\Omega_{ m b}h^2$	2.295 ± 0.048	2.222 ± 0.023
$\Omega_{ m c}h^2$	0.1099 ± 0.0048	0.1198 ± 0.0022
$100 heta_{ m MC}$	1.0398 ± 0.0014	1.0408 ± 0.0005
$n_{ m s}$	0.9969 ± 0.0238	0.9655 ± 0.0062
$10^9 A_{ m s} e^{-2 au}$	1.7706 ± 0.0414	1.8805 ± 0.0138
Derived		
Ω_{Λ}	0.736 ± 0.025	0.685 ± 0.013
σ_8	0.769 ± 0.023	0.830 ± 0.014
H_0	71.23 ± 2.12	67.30 ± 0.96

Henning 2017 There is slight tension within CMB measurements, so this may be a part of the story.

Addison

http://cosmo-nordita.fysik.su.se/talks/w3/d2/Galli_nordita.pdf

New Foundation SN Survey will check 0.4%

Foley, Scolnic, Rest et al. in prep Scolnic, Rest, Foley, Riess et al. in prep

The question is: How do we go from a 2.4% measurement to a 1% measurement?

> Cepheids \rightarrow Type Ia Supernovae SN Ia: m-M (mag) 29 -0.4 29 Cepheid: m-M (mag) 1.2% Uncertainty Planck low-I H0 0.4 Planck high+low-l H0 mag 0.0 -0.4 SH0ES result 2016

The answer is: Right now we have 19 calibrators, want to get to 50.

Just awarded HST time to build this up, stay tuned over next year or two.

"If a persuasive case can be ma estimates, then this will be stro

